首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the fluorescent phospholipid N-Rh-PE into the apical plasma membrane of MDCK cells. Liposome fusion was induced by low pH and mediated by the influenza virus hemagglutinin, which was expressed on the apical cell surface after viral infection. Redistribution of N-Rh-PE to the basolateral surface, monitored at 0 degree C by fluorescence microscopy, appeared to be dependent on the transbilayer orientation of the fluorescent lipids in the plasma membrane. Asymmetric liposomes containing over 85% of the N-Rh-PE in the external bilayer leaflet, as shown by a phospholipase A2 assay, were generated by octyl beta-D-glucoside dialysis. When these asymmetric liposomes were fused with the apical plasma membrane, fluorescent lipid did not move to the basolateral side. Symmetric liposomes which contained the marker in both leaflets were obtained by freeze-thawing asymmetric liposomes or by reverse-phase evaporation. Upon fusion of these with the apical membrane, redistribution to the basolateral membrane occurred immediately. Redistribution could be observed with asymmetric liposomes only when the tight junctions were opened by incubation in a Ca2+-free medium. During the normal experimental manipulations the tight junctions remained intact since a high trans-epithelial electrical resistance was maintained over the cell monolayer. We conclude that the tight junction acts as a diffusion barrier for the fluorescent phospholipid N-Rh-PE in the exoplasmic leaflet of the plasma membrane but not in the cytoplasmic leaflet.  相似文献   

2.
Structure and dynamics of model pore insertion into a membrane   总被引:1,自引:0,他引:1  
A cylindrical transmembrane molecule is constructed by linking hydrophobic sites selected from a coarse grain model. The resulting hollow tube assembly serves as a representation of a transmembrane channel, pore, or a carbon nanotube. The interactions of a coarse grain di-myristoyl-phosphatidyl-choline hydrated bilayer with both a purely hydrophobic tube and a tube with hydrophilic caps are studied. The hydrophobic tube rotates in the membrane and becomes blocked by lipid tails after a few tens of nanoseconds. The hydrophilic sites of the capped tube stabilize it by anchoring the tube in the lipid headgroup/water interfacial region of each membrane leaflet. The capped tube remains free of lipid tails. The capped tube spontaneously conducts coarse grain water sites; the free-energy profile of this process is calculated using three different methods and is compared to the barrier for water permeation through the lipid bilayer. Spontaneous tube insertion into an undisturbed lipid bilayer is also studied, which we reported briefly in a previous publication. The hydrophobic tube submerges into the membrane core in a carpetlike manner. The capped tube laterally fuses with the closest leaflet, and then, after plunging into the membrane interior, rotates to assume a transbilayer orientation. Two lipids become trapped at the end of the tube as it penetrates the membrane. The hydrophilic headgroups of these lipids associate with the lower tube cap and assist the tube in crossing the interior of the membrane. When the rotation is complete these lipids detach from the tube caps and fuse with the lower leaflet lipids.  相似文献   

3.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

4.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.  相似文献   

5.
The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8-15 kBT. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion.  相似文献   

6.
Membranes of Sulfolobus acidocaldarius, an extreme thermophilic archaebacterium, are composed of unusual bipolar lipids. They consist of macrocyclic tetraethers with two polar heads linked by two hydrophobic C40 phytanyl chains which are thought to be arranged as a monolayer in the cytoplasmic membrane. Fractionation of a total lipid-extract from S. acidocaldarius yielded a lipid fraction which forms closed and stable unilamellar liposomes in aqueous media. Beef heart cytochrome c-oxidase could be functionally reconstituted in these liposomes. In the presence of reduced cytochrome c, a protonmotive force (delta p) across the liposomal membrane was generated of up to -92 mV. Upon fusion of these proteoliposomes with membrane vesicles of Lactococcus lactis, the delta p generated by cytochrome c-oxidase activity was capable to drive uphill transport of leucine. Electron microscopic analysis indicated that the tetraether lipids form a single monolayer liposome. The results demonstrate that tetraether lipids of archaebacteria can form a suitable matrix for the function of exogenous membrane proteins originating from a regular lipid bilayer.  相似文献   

7.
One of the fundamental properties of biological membranes is the high lateral integrity provided by the lipid bilayer, the structural core and the foundation of their barrier function. This tensile strength is due to the intrinsic properties of amphiphilic lipid molecules, which spontaneously self-assemble into a stable bilayer structure due to the hydrophobic effect. In the highly dynamic life of cellular membranes systems, however, this integrity has to be regularly compromised. One of the emerging puzzles is the mechanism of localized rupture of lipid monolayer, the formation of tiny hydrophobic patches and flipping of lipid tails between closely apposed monolayers. The energy cost of such processes is prohibitively high, unless cooperative deformations in a small membrane patch are carefully organized. Here we review the latest experimental and theoretical data on how such deformations can be conducted, specifically describing how elastic stresses yield tilting of lipids leading to cooperative restructuring of lipid monolayers. Proteins specializing in membrane remodeling assemble into closely packed circular complexes to arrange these deformations in time and space.  相似文献   

8.
Control of lipid membrane stability by cholesterol content   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content.  相似文献   

9.
The fusion between two lipid membranes is a ubiquitous mechanism in cell traffic and pathogens invasion. Yet it is not well understood how two distinct bilayers overcome the energy barriers towards fusion and reorganize themselves to form a unique continuous bilayer. The magnitudes and numbers of these energy barriers are themselves an open question. To tackle these issues, we developed a new tool that allows to control the forces applied between two supported lipid bilayers (SLBs) deposited on superparamagnetic beads. By applying a magnetic field, the beads self-organize along field lines in chains of beads and compress the two membranes on the contact zone. Using the diffusion of fluorescently labelled lipids from one bilayer to the other allows us to identify fusion of the bilayers in contact. We applied increasing forces on SLBs and increased the occurrence of fusion. This experimental system allows the simultaneous study of tens of facing bilayers in a single experiment and mitigates the stochasticity of the fusion process. It is thus a powerful tool to test the various parameters involved in the membrane fusion process.  相似文献   

10.
The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored.  相似文献   

11.
Deployment of membrane fusion protein domains during fusion   总被引:2,自引:0,他引:2  
It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion proteins SV5 F1 and HIV gp120/41, and for the intracellular SNARE fusion system. By comparing these domains, we have constructed a minimal set which appears to be adequate to explain how the conformational changes can produce a successful fusion event, i.e. communication of aqueous compartments.  相似文献   

12.
Lipids in biological membrane fusion   总被引:8,自引:0,他引:8  
The results reviewed suggest that membrane fusion in diverse biological fusion reactions involves formation of some specific intermediates: stalks and pores. Energy of these intermediates and, consequently, the rate and extent of fusion depend on the propensity of the corresponding monolayers of membranes to bend in the required directions.Proteins and peptides can control the bending energy of membrane monolayers in a number of ways. Monolayer lipid composition may be altered by different phospholipases [50, 85, 90], flipases and translocases [4, 50]. Proteins and peptides can change monolayer spontaneous curvature or hydrophobic void energy by direct interaction with membrane lipids [20, 32, 111]. Proteins may also provide some barriers for lipid diffusion in the plane of the monolayer [83, 141]. If diffusion of lipids at some specific membrane sites (e.g., in the vicinity of fusion protein) is somehow hindered, the energy of the bent fusion intermediates would reflect the elastic properties of these particular sites rather than the spontaneous curvature of the whole monolayers. Proteins may deform membranes while bringing them locally into close contact. The alteration of the geometric (external) curvature will certainly change the elastic energy of the initial state and, thus affect the energetic barriers of the formation of the intermediates [143]. In addition, the area and the energy of the stalk can be reduced by preliminary bending of the contacting membranes [111]. The possible effects of proteins and polymers on local elastic properties and local shapes of the membranes have been recently analyzed [22, 39, 45, 63]. These studies may provide a good basis for future development of theoretical models of protein-mediated fusion.  相似文献   

13.
Membrane fusion mediated by coiled coils: a hypothesis   总被引:6,自引:0,他引:6       下载免费PDF全文
A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.  相似文献   

14.
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli–Davson–Robertson “unit membrane” model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.  相似文献   

15.
The Green Fluorescent Protein (GFP) is a useful marker to trace the expression of cellular proteins. However, little is known about changes in protein interaction properties after fusion to GFP. In this study, we present evidence for a binding affinity of chimeric cadmium-binding green fluorescent proteins to lipid membrane. This affinity has been observed in both cellular membranes and artificial lipid monolayers and bilayers. At the cellular level, the presence of Cd-binding peptide promoted the association of the chimeric GFP onto the lipid membrane, which declined the fluorescence emission of the engineered cells. Binding affinity to lipid membranes was further investigated using artificial lipid bilayers and monolayers. Small amounts of the chimeric GFP were found to incorporate into the lipid vesicles due to the high surface pressure of bilayer lipids. At low interfacial pressure of the lipid monolayer, incorporation of the chimeric Cd-binding GFP onto the lipid monolayer was revealed. From the measured lipid isotherms, we conclude that Cd-binding GFP mediates an increase in membrane fluidity and an expansion of the surface area of the lipid film. This evidence was strongly supported by epifluorescence microscopy, showing that the chimeric Cd-binding GFP preferentially binds to fluid-phase areas and defect parts of the lipid monolayer. All these findings demonstrate the hydrophobicity of the GFP constructs is mainly influenced by the fusion partner. Thus, the example of a metal-binding unit used here shines new light on the biophysical properties of GFP constructs.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

16.
Unraveling the conformation of membrane-bound viral fusion peptides is essential for understanding how those peptides destabilize the bilayer topology of lipids that is important for virus-cell membrane fusion. Here, molecular dynamics (MD) simulations were performed to investigate the conformation of the 20 amino acids long fusion peptide of influenza hemagglutinin of strain X31 bound to a dimyristoyl phosphatidylcholine (DMPC) bilayer. The simulations revealed that the peptide adopts a kinked conformation, in agreement with the NMR structures of a related peptide in detergent micelles. The peptide is located at the amphipathic interface between the headgroups and hydrocarbon chains of the lipid by an energetically favorable arrangement: The hydrophobic side chains of the peptides are embedded into the hydrophobic region and the hydrophilic side chains are in the headgroup region. The N-terminus of the peptide is localized close to the amphipathic interface. The molecular dynamics simulations also revealed that the peptide affects the surrounding bilayer structure. The average hydrophobic thickness of the lipid phase close to the N-terminus is reduced in comparison with the average hydrophobic thickness of a pure dimyristoyl phosphatidylcholine bilayer.  相似文献   

17.
Integral membrane proteins have central roles in a vast number of vital cellular processes. A structural feature that most membrane proteins have in common is the presence of one or more alpha-helices with which they traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to lipid properties like lateral packing, hydrophobic thickness, and headgroup charge. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane protein. In this review, we will focus on how the lipid environment influences two specific properties of transmembrane segments: their lateral association and their tilt with respect to the bilayer normal.  相似文献   

18.
Molecular dynamics simulations have become a popular and powerful technique to study lipids and membrane proteins. We present some general questions and issues that should be considered prior to embarking on molecular dynamics simulation studies of membrane proteins and review common simulation methods. We suggest a practical approach to setting up and running simulations of membrane proteins, and introduce two new (related) methods to embed a protein in a lipid bilayer. Both methods rely on placing lipids and the protein(s) on a widely spaced grid and then 'shrinking' the grid until the bilayer with the protein has the desired density, with lipids neatly packed around the protein. When starting from a grid based on a single lipid structure, or several potentially different lipid structures (method 1), the bilayer will start well-packed but requires more equilibration. When starting from a pre-equilibrated bilayer, either pure or mixed, most of the structure of the bilayer stays intact, reducing equilibration time (method 2). The main advantages of these methods are that they minimize equilibration time and can be almost completely automated, nearly eliminating one time consuming step in MD simulations of membrane proteins.  相似文献   

19.
In this paper we report on the molecular dynamics simulation of a fluid phase hydrated dimyristoylphosphatidylcholine bilayer. The initial configuration of the lipid was the x-ray crystal structure. A distinctive feature of this simulation is that, upon heating the system, the fluid phase emerged from parameters, initial conditions, and boundary conditions determined independently of the collective properties of the fluid phase. The initial conditions did not include chain disorder characteristic of the fluid phase. The partial charges on the lipids were determined by ab initio self-consistent field calculations and required no adjustment to produce a fluid phase. The boundary conditions were constant pressure and temperature. Thus the membrane was not explicitly required to assume an area/phospholipid molecule thought to be characteristic of the fluid phase, as is the case in constant volume simulations. Normal to the membrane plane, the pressure was 1 atmosphere, corresponding to the normal laboratory situation. Parallel to the membrane plane a negative pressure of -100 atmospheres was applied, derived from the measured surface tension of a monolayer at an air-water interface. The measured features of the computed membrane are generally in close agreement with experiment. Our results confirm the concept that, for appropriately matched temperature and surface pressure, a monolayer is a close approximation to one-half of a bilayer. Our results suggest that the surface area per phospholipid molecule for fluid phosphatidylcholine bilayer membranes is smaller than has generally been assumed in computational studies at constant volume. Our results confirm that the basis of the measured dipole potential is primarily water orientations and also suggest the presence of potential barriers for the movement of positive charges across the water-headgroup interfacial region of the phospholipid.  相似文献   

20.
Possible mechanism of membrane fusion   总被引:6,自引:0,他引:6  
M M Kozlov  V S Markin 《Biofizika》1983,28(2):242-247
The stalker mechanism of membrane fusion was considered. Initiation and evolution of monolayer and bilayer bridges-stalks between the membranes were studied. From the expression of elastic energy of the stalk the value of spontaneous curvature of its membrane Ks at which the bridge may appear, was found. It was shown that in terms of the stalker mechanism formation of the stalk of the final radius or complete fusion were possible Ks values for realizing this or that variant were found. The energetic barrier of hydrophobic interaction and the barrier of elastic energy which the membranes had to overcome for stalker formation were found. The experimental data on the fusion of small and large liposomes were analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号