首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Auger  H C Jarrell  I C Smith 《Biochemistry》1988,27(13):4660-4667
The interactions of the local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. The lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed [Boulanger, Y., Schreier, S., & Smith, I. C. P. (1981) Biochemistry 20, 6824-6830] that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic.  相似文献   

2.
H Komatsu  E S Rowe 《Biochemistry》1991,30(9):2463-2470
It is now recognized that many amphiphilic molecules such as ethanol can induce the formation of the fully interdigitated gel phase (L beta I) in phosphatidylcholines (PC's). In the present study, we have developed a simple detection method for the L beta I phase using pyrene-labeled PC (PyrPC), which is a PC analogue with covalently coupled pyrene moiety at the end of one of its acyl chains. The intensity ratio of its fluorescence vibrational bands is a reflection of the polarity of the environment of the fluorophore. We have tested this fluorophore in several established interdigitated lipid systems, including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (1,2-DPPC) in the presence of high concentrations of ethanol and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) and 1,3-dipalmitoyl-sn-glycero-2-phosphocholine (1,3-DPPC) in the absence of any additives. We have found in each of these systems that the ratio of the intensities of band III (387.5 nm) to band I (376.5 nm) is sensitive to the lipid phase change from the noninterdigitated L beta' phase to the interdigitated L beta I phase. By comparison of the III/I ratios for PyrPC in the lipid systems with the III/I ratios for methylpyrene in organic solvents, it was shown that the polarity of the PyrPC environment in the L beta I phase is similar to that of pentanol or ethanol. Using this method, we investigated the effect of cholesterol on the ethanol induction of the interdigitated gel phase in 1,2-DPPC. We found that the ethanol induction of the interdigitated gel phase is prevented by the presence of 20 mol % cholesterol.  相似文献   

3.
X-band electron paramagnetic resonance (EPR) spectroscopy has been employed to investigate the dynamic properties of magnetically-aligned phospholipid bilayers (bicelles) based on the molecular order parameters (S(mol)), the hyperfine splitting values and the line shapes of the EPR spectra. For the first time, a series of EPR spectra of n-doxylstearic acid spin-labels (n = 5, 7, 12, and 16) incorporated into Tm3+-doped parallel-aligned, Dy3+-doped perpendicular-aligned, and randomly dispersed 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine (DMPC/DHPC) bicelles with respect to the direction of the static magnetic field have been investigated as a function of cholesterol content and temperature variation to characterize the orientational aspects along the hydrocarbon acyl chains. Important general observations are that under conditions for which the bicelle is poised in the liquid crystalline phase, the degree of ordering decreases as the nitroxide moiety is transferred toward the end of the stearic acid acyl chains. The addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC phospholipid bilayers and increases the chain order. However, increasing the temperature of the bicelle system decreases the chain order. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other biological and model membrane systems. The results indicate that magnetically-aligned phospholipid bilayers are an excellent model membrane system.  相似文献   

4.
High-pressure Fourier-transform infrared (FT-IR) spectroscopy was used to study the barotropic behavior of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) in the absence and the presence of tetracaine at pH 5.5 and 9.5. The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results show that the barotropic behavior of the negatively charged phosphatidylserine bilayers is very similar to that observed for zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, with corresponding acyl chains. The results also indicate that the local anesthetic partitions into phosphatidylserine bilayers in an environment close to the membrane-water interface and interacts electrostatically with the lipid head group. Application of high hydrostatic pressure on the lipid-anesthetic systems results in the pressure-induced expulsion of the anesthetic from a membrane to an aqueous environment. The pressures required for expulsion of anesthetic from bilayers are much higher for the unsaturated lipid (DOPS) than for the saturated lipid (DMPS) (approximately 6 kbar vs approximately 2 kbar, respectively). Whereas incorporation of the anesthetic into DOPS bilayers does not affect significantly the structural and dynamic properties of the disordered acyl chains in the liquid-crystalline phase, it orders the DMPS acyl chains in the gel phase.  相似文献   

5.
Calorimetric, X-ray diffraction, and 31P nuclear magnetic resonance (NMR) studies of aqueous dispersions of 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) gel phases at low temperatures (-60 to 22 degrees C) show thermal, structural, and dynamic differences when compared to aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) gel phases at corresponding temperatures. Differential scanning calorimetry of DHPC dispersions demonstrates a reversible, low-enthalpy "subtransition" at 4 degrees C in contrast to the conditionally reversible, high-enthalpy subtransition observed at 17 degrees C for annealed DPPC bilayers. X-ray diffraction studies indicate that DHPC dispersions form a lamellar gel phase with dav congruent to 46 A both above and below the "subtransition". It is suggested that the reduced dav observed for DHPC (46 A as compared to 64 A in DPPC) is due to an interdigitated lamellar gel phase which exists at all temperatures below the pretransition at 35 degrees C. 31P NMR spectra of DHPC gel-phase bilayers show an axially symmetric chemical shift anisotropy powder pattern which remains sharp down to -20 degrees C, suggesting the presence of fast axial diffusion. In contrast, 31P spectra of DPPC bilayers indicate this type of motion is frozen out at approximately 0 degrees C.  相似文献   

6.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

7.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

8.
The effects of pressure, up to 5 kbar, on multilamellar vesicles of 1,2-dipalmitoyl-sn-phosphatidylcholine perdeuterated in the acyl chains (DPPC-d62) were examined by using high-pressure NMR techniques. A deuterium probe was built, and the quadrupole splitting was measured against pressure at various temperatures. The experiments were performed on pure lipid bilayers in the liquid-crystalline state and on bilayers in the liquid-crystalline state containing the local anesthetic tetracaine. The results show that the order parameter of all segments of the acyl chains increases with pressure in the liquid-crystalline state. The more highly ordered regions of the chains are affected slightly more than the regions near the methyl ends. The addition of tetracaine increases the disorder of the chains, and pressure reverses the effect of anesthetic on the lipid as seen by the reversal of the changes in line shape and the measured order parameter.  相似文献   

9.
Apolipoprotein mediated formation of nanodisks was studied in detail using apolipophorin III (apoLp-III), thereby providing insight in apolipoprotein-lipid binding interactions. The spontaneous solubilization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles occured only in a very narrow temperature range at the gel-liquid-crystalline phase transition temperature, exhibiting a net exothermic interaction based on isothermal titration calorimetry analysis. The resulting nanodisks were protected from proteolysis by trypsin, endoproteinase Glu-C, chymotrypsin and elastase. DMPC solubilization and the simultaneous formation of nanodisks were promoted by increasing the vesicle diameter, protein to lipid ratio and concentration. Inclusion of cholesterol in DMPC dramatically enhanced the rate of nanodisk formation, presumably by stabilization of lattice defects which form the main insertion sites for apolipoprotein α-helices. The presence of fully saturated acyl chains with a length of 13 or 14 carbons in phosphatidylcholine allowed the spontaneous vesicle solubilization upon apolipoprotein addition. Nanodisks with C13:0-phosphatidylcholine were significantly smaller with a diameter of 11.7 ± 3.1nm compared to 18.5 ± 5.6 nm for DMPC nanodisks determined by transmission electron microscopy. Nanodisk formation was not observed when the phosphatidylcholine vesicles contained acyl chains of 15 or 16 carbons. However, using very high concentrations of lipid and protein (>10mg/ml), 1,2,-dipalmitoyl-sn-glycero-3-phosphocholine nanodisks could be produced spontaneously although the efficiency remained low.  相似文献   

10.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

11.
X-ray small- and wide-angle diffraction, differential scanning calorimetry (DSC), temperature scanning densitometry (TSD) and electron microscopy were used to study the lyotropic and thermotropic properties of the system 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine-water over a wide range of compositions from the dry lipids to a large excess of water, and in the temperature range between 0 degrees C and 150 degrees C. The results were used to construct a temperature-composition phase diagram. The phases have been characterized with respect to their molecular arrangements and hydrocarbon chain packing subcells. In the fully hydrated state (greater than 45 wt% H2O) four thermotropic phases were found, with readily reversible transitions at 5 degrees C, 32.5 degrees C and 43.6 degrees C, respectively. The two lower temperature phases deviate from all others in consisting of bilayers with fully interdigitated hydrocarbon chains, while above 32.5 degrees C the structures resemble closely those of the analog diester lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). At hydrations between 30 and 45 wt% H2O, and below 32 degrees C, interdigitated and non-interdigitated multilayers coexist in one coherent phase. A bilayer tilting mechanism is proposed for the formation of this coexistence of two regular structures. Below 30 wt% H2O, hydrated 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) exists in lamellar, non-interdigitated bilayers, showing very weak interbilayer swelling. There, the water molecules appear to occupy voids between the polar headgroups.  相似文献   

12.
We have examined the effects of the local anesthetic tetracaine on the orientational and dynamic properties of glycolipid model membranes. We elected to study the interactions of tetracaine with the pure glycolipid 1,2-di-O-tetradecyl-3-O-(beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL) and a mixture of beta-DTGL (20 mol%) in dimyristoylphosphatidylcholine (DMPC) by deuterium NMR (2H-NMR) spectroscopy. 2H-NMR spectra of beta-DTGL have been measured as a function of temperature in the presence of both the charged (pH 5.5) and uncharged forms (pH 9.5) of tetracaine. The results indicate that the anesthetic induces the formation of non-lamellar phases. Specifically, the incorporation of uncharged tetracaine results in the formation of a hexagonal phase which is stable from 52 to 60 degrees C. At lower pH, the spectrum at 52 degrees C is very reminescent of that of the beta-glucolipid alone in a bilayer environment, while as the temperature is elevated to 60 degrees C, a transition from a spectrum indicative of axial symmetry to one due to nearly isotropic motion or symmetry occurs, which may result from the formation of a cubic phase. Although it leads to an alteration in the phase behavior, the presence of tetracaine does not induce large changes in the headgroup orientation of beta-DTGL. In contrast to the pure glycolipid situation, the interaction of tetracaine with beta-DTGL (20 mol%) in DMPC does not trigger the formation of non-lamellar phases, but leads to a slight reduction in molecular ordering. The presence of the charged form of the local anesthetic near the aqueous interface of the bilayer appears to induce a small change in the conformation about the C2-C3 bond of the glycerol backbone of beta-DTGL in the mixed lipid system. Thus, the major influence of the local anesthetic on glycolipids is a change in the stability of the lamellar phase, facilitating conversion to phases with hexagonal or isotropic environments for the lipid molecules.  相似文献   

13.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

14.
P T Wong  C H Huang 《Biochemistry》1989,28(3):1259-1263
The barotropic behavior of D2O dispersions of 1-stearoyl-2-caproyl-sn-glycero-3-phosphocholine, C(18):C(10)PC, a highly asymmetric phospholipid in which the length of the fully extended acyl chain at the sn-1 position of the glycerol backbone is twice as long as that at the sn-2 position, has been investigated by high-pressure Fourier transform infrared spectroscopy. This asymmetric phosphatidylcholine bilayer at room temperature displays a pressure-induced phase transition corresponding to the liquid-crystalline----gel phase transition at 1.4 kbar. A conformational ordering of the lipid acyl chains is observed to take place abruptly at the transition pressure of 1.4 kbar. However, the lamellar lipid molecules and their acyl chains remain to be orientationally disordered in the gel phase until the applied pressure reaches 5.5 kbar. In the gel phase of fully hydrated C(18):C(10)PC, the asymmetric lipid molecules assemble into mixed interdigitated bilayers with perpendicular orientation of the zigzag planes among neighboring acyl chains. The role of excess water played in the interchain structure and the behavior of excess water and bound water under high pressure are also discussed.  相似文献   

15.
P L Chong  S Capes  P T Wong 《Biochemistry》1989,28(21):8358-8363
The effects of hydrostatic pressure on the location of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN), an environmentally sensitive fluorescent probe, in phosphatidylcholine lipid bilayers have been studied by Fourier-transform infrared spectroscopy (FT-IR) over the pressure range of 0.001-25 kbar. The results derived from the PRODAN C = O stretching band, the correlation field splitting of the methylene scissoring mode, and the methylene symmetric stretching mode as well as the absorption of the naphthalene ring show that in the sample of 4% (w/w) PRODAN in dimyristoyl-L-alpha-phosphatidylcholine (DMPC) at pH 6.8, most of the PRODAN molecules are embedded in the bilayers. In contrast, at pH 3.0, PRODAN was found to reside either on the membrane surface or dispersed in water. Compared to DMPC, egg yolk phosphatidylcholine (egg PC), which contains a substantial amount of unsaturated fatty acyl chains, is more susceptible to PRODAN permeation. The present study shows that the pressure dependence of the location of PRODAN in lipid membranes is different from that of tetracaine, a local anesthetic, in lipid bilayers. The model regarding the PRODAN location in lipid bilayers derived from the present infrared data has been compared with that obtained with previous fluorescence studies.  相似文献   

16.
Fluorescence quenching and resonance energy transfer have been used to determine the localization of the local anesthetic tetracaine in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) as a function of both temperature and ionic strength. The fluorescence behaviour of tetracaine in vesicles can be attributed to its different partition coefficients in acid and basic solution, in gel phase and fluid phase vesicles, respectively. Using both steady-state and time-resolved fluorescence measurements we show that a saturable binding rather than a partitioning model holds for the interaction of tetracaine with gel phase bilayers. The relative quenching efficiencies of the series of n-AS dyes depend on the phase state of the bilayer and suggest a deeper incorporation of tetracaine in fluid phase than in gel phase membranes. Resonance energy transfer measurements support the view that tetracaine is incorporated predominantly in the region of the 9-AS chromophore in DMPC-bilayers.  相似文献   

17.
Lipid bilayers play an important role in biological systems as they protect cells against unwanted chemicals and provide a barrier for material inside a cell from leaking out. In this paper, nearly 30 μs of molecular dynamics (MD) simulations were performed to investigate phase transitions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-phosphocholine (DPPC) lipid bilayers from the liquid crystalline (Lα) to the ripple (Pβ) and to the gel phase (Lβ). Our MD simulations accurately predict the main transition temperature for the single-component bilayers. A key focus of this work is to quantify the structure of the Pβ phase for DMPC and compare with measures from x-ray experiments. The Pβ major arm has similar structure to that of the Lβ, while the thinner minor arm has interdigitated chains and the transition region between these two regions has large chain splay and disorder. At lower temperatures, our MD simulations predict the formation of the Lβ phase with tilted fatty acid chains. The Pβ and Lβ phases are studied for mixtures of DMPC and DPPC and compare favorably with experiment. Overall, our MD simulations provide evidence for the relevancy of the CHARMM36 lipid force field for structures and add to our understanding of the less-defined Pβ phase.  相似文献   

18.
X Peng  J Jonas 《Biochemistry》1992,31(28):6383-6390
High-pressure 31P NMR was used for the first time to investigate the effects of pressure on the structure and dynamics of the phosphocholine headgroup in pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar aqueous dispersions and in DPPC bilayers containing the positively charged form of the local anesthetic tetracaine (TTC). The 31P chemical shift anisotropies, delta sigma, and the 31P spin-lattice relaxation times, T1, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for both pure DPPC and DPPC/TTC bilayers. This pressure range permitted us to explore the rich phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as gel I (P beta'), gel II (L beta'), gel III, gel IV, gel X, and the interdigitated, Gi, gel phase. For pure DPPC bilayers, pressure had an ordering effect on the phospholipid headgroup within the same phase and induced an interdigitated Gi gel phase which was formed between the gel I (P beta') and gel II (L beta') phases. The 31P spin-lattice relaxation time measurements showed that the main phase transition (LC to gel I) was accompanied by the transition between the fast and slow correlation time regimes. Axially symmetric 31P NMR lineshapes were observed at pressures up to approximately 3 kbar but changed to characteristic axially asymmetric rigid lattice lineshapes at higher pressures (3.1-5.1 kbar).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号