首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six male subjects [23 yr (SD 4)] performed repetitions (6-8) of two-legged, moderate-intensity, knee-extension exercise during two separate protocols that included step transitions from 3 W to 90% estimated lactate threshold (thetaL) performed as a single step (S3) and in two equal steps (S1, 3 W to approximately 45% thetaL; S2, approximately 45% thetaL to approximately 90% thetaL). The time constants (tau) of pulmonary oxygen uptake (Vo2), leg blood flow (LBF), heart rate (HR), and muscle deoxygenation (HHb) were greater (P < 0.05) in S2 (tauVo2, approximately 52 s; tauLBF, approximately 39 s; tauHR, approximately 42 s; tauHHb, approximately 33 s) compared with S1 (tauVo2, approximately 24 s; tauLBF, approximately 21 s; tauHR, approximately 21 s; tauHHb, approximately 16 s), while the delay before an increase in HHb was reduced (P < 0.05) in S2 (approximately 14 s) compared with S1 (approximately 20 s). The Vo2 and HHb amplitudes were greater (P < 0.05) in S2 compared with S1, whereas the LBF amplitude was similar in S2 and S1. Thus the slowed Vo2 response in S2 compared with S1 is consistent with a mechanism whereby Vo2 kinetics is limited, in part, by a slowed adaptation of blood flow and/or O2 transport when exercise was initiated from a baseline of moderate-intensity exercise.  相似文献   

2.
Metabolic alkalosis induced by sodium bicarbonate (NaHCO(3)) ingestion has been shown to enhance performance during brief high-intensity exercise. The mechanisms associated with this increase in performance may include increased muscle phosphocreatine (PCr) breakdown, muscle glycogen utilization, and plasma lactate (Lac(-)(pl)) accumulation. Together, these changes would imply a shift toward a greater contribution of anaerobic energy production, but this statement has been subject to debate. In the present study, subjects (n = 6) performed a progressive wrist flexion exercise to volitional fatigue (0.5 Hz, 14-21 min) in a control condition (Con) and after an oral dose of NaHCO(3) (Alk: 0.3 g/kg; 1.5 h before testing) to evaluate muscle metabolism over a complete range of exercise intensities. Phosphorus-31 magnetic resonance spectroscopy was used to continuously monitor intracellular pH, [PCr], [P(i)], and [ATP] (brackets denote concentration). Blood samples drawn from a deep arm vein were analyzed with a blood gas-electrolyte analyzer to measure plasma pH, Pco(2), and [Lac(-)](pl), and plasma [HCO(3)(-)] was calculated from pH and Pco(2). NaHCO(3) ingestion resulted in an increased (P < 0.05) plasma pH and [HCO(3)(-)] throughout rest and exercise. Time to fatigue and peak power output were increased (P < 0.05) by approximately 12% in Alk. During exercise, a delayed (P < 0.05) onset of intracellular acidosis (1.17 +/- 0.26 vs. 1.28 +/- 0.22 W, Con vs. Alk) and a delayed (P < 0.05) onset of rapid increases in the [P(i)]-to-[PCr] ratio (1.21 +/- 0.30 vs. 1.30 +/- 0.30 W) were observed in Alk. No differences in total [H(+)], [P(i)], or [Lac(-)](pl) accumulation were detected. In conclusion, NaHCO(3) ingestion was shown to increase plasma pH at rest, which resulted in a delayed onset of intracellular acidification during incremental exercise. Conversely, NaHCO(3) was not associated with increased [Lac(-)](pl) accumulation or PCr breakdown.  相似文献   

3.
The effects of prior moderate- and prior heavy-intensity exercise on the subsequent metabolic response to incremental exercise were examined. Healthy, young adult subjects (n = 8) performed three randomized plantar-flexion exercise tests: 1) an incremental exercise test (approximately 0.6 W/min) to volitional fatigue (Ramp); 2) Ramp preceded by 6 min of moderate-intensity, constant-load exercise below the intracellular pH threshold (pHT; Mod-Ramp); and 3) Ramp preceded by 6 min of heavy-intensity, constant-load exercise above pHT (Hvy-Ramp); the constant-load and incremental exercise periods were separated by 6 min of rest. (31)P-magnetic resonance spectroscopy was used to continuously monitor intracellular pH, phosphocreatine concentration ([PCr]), and inorganic phosphate concentration ([P(i)]). No differences in exercise performance or the metabolic response to exercise were observed between Ramp and Mod-Ramp. However, compared with Ramp, a 14% (SD 10) increase (P < 0.01) in peak power output (PPO) was observed in Hvy-Ramp. The improved exercise performance in Hvy-Ramp was accompanied by a delayed (P = 0.01) onset of intracellular acidosis [Hvy-Ramp 60.4% PPO (SD 11.7) vs. Ramp 45.8% PPO (SD 9.4)] and a delayed (P < 0.01) onset of rapid increases in [P(i)]/[PCr] [Hvy-Ramp 61.5% PPO (SD 12.0) vs. Ramp 45.1% PPO (SD 9.1)]. In conclusion, prior heavy-intensity exercise delayed the onset of intracellular acidosis and enhanced exercise performance during a subsequent incremental exercise test.  相似文献   

4.
IL-6 induces lipolysis when administered to humans. Consequently, it has been hypothesized that IL-6 is released from skeletal muscle during exercise to act in a "hormonelike" manner and increase lipolysis from adipose tissue to supply the muscle with substrate. In the present study, we hypothesized that suppressing lipolysis, and subsequent free fatty acid (FFA) availability, would result in a compensatory elevation in IL-6 at rest and during exercise. First, we had five healthy men ingest nicotinic acid (NA) at 30-min intervals for 120 min at rest [10 mg/kg body mass (initial dose), 5 mg/kg body mass (subsequent doses)]. Plasma was collected and analyzed for FFA and IL-6. After 120 min, plasma FFA concentration was attenuated (0 min: 0.26 +/- 0.05 mmol/l; 120 min: 0.09 +/- 0.02 mmol/l; P < 0.01), whereas plasma IL-6 was concomitantly increased approximately eightfold (0 min: 0.75 +/- 0.18 pg/ml; 120 min: 6.05 +/- 0.89 pg/ml; P < 0.001). To assess the effect of lipolytic suppression on the exercise-induced IL-6 response, seven active, but not specifically trained, men performed two experimental exercise trials with (NA) or without [control (Con)] NA ingestion 60 min before (10 mg/kg body mass) and throughout (5 mg/kg body mass every 30 min) exercise. Blood samples were obtained before ingestion, 60 min after ingestion, and throughout 180 min of cycling exercise at 62 +/- 5% of maximal oxygen consumption. IL-6 gene expression, in muscle and adipose tissue sampled at 0, 90, and 180 min, was determined by using semiquantitative real-time PCR. IL-6 mRNA increased in Con (rest vs. 180 min; P < 0.01) approximately 13-fold in muscle and approximately 42-fold in fat with exercise. NA increased (rest vs. 180 min; P < 0.01) IL-6 mRNA 34-fold in muscle, but the treatment effect was not statistically significant (Con vs. NA, P = 0.1), and 235-fold in fat (Con vs. NA, P < 0.01). Consistent with the study at rest, NA completely suppressed plasma FFA (180 min: Con, 1.42 +/- 0.07 mmol/l; NA, 0.10 +/- 0.01 mmol/l; P < 0.001) and increased plasma IL-6 (180 min: Con, 9.81 +/- 0.98 pg/ml; NA, 19.23 +/- 2.50 pg/ml; P < 0.05) during exercise. In conclusion, these data demonstrate that circulating IL-6 is markedly elevated at rest and during prolonged moderate-intensity exercise when lipolysis is suppressed.  相似文献   

5.
The effect of prior exercise on pulmonary O(2) uptake (Vo(2)(p)), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 (5) yr; mean (SD)] performed step transitions (n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Delta50%, 8 min; HVY 2) KE exercise. Vo(2)(p) was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O(2)Hb)-, deoxy (HHb)-, and total (Hb(tot)) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 Vo(2)(p), LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb - MRT = TD + tau) was calculated. Prior heavy-intensity exercise resulted in a speeding (P < 0.05) of phase 2 Vo(2)(p) kinetics [HVY 1: 42 s (6); HVY 2: 37 s (8)], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the Vo(2)(p) slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O(2)Hb and Hb(tot) were elevated throughout the on-transient following prior heavy-intensity exercise. The tauLBF [HVY 1: 39 s (7); HVY 2: 47 s (21); P = 0.48] and HHb-MRT [HVY 1: 23 s (4); HVY 2: 21 s (7); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 microM (10); HVY 2: 25 microM (10); P < 0.001] and the HHb-to-Vo(2)(p) ratio [(HHb/Vo(2)(p)) HVY 1: 14 microM x l(-1) x min(-1) (6); HVY 2: 17 microM x l(-1) x min(-1) (5); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 tauVo(2)(p) was the result of both elevated local O(2) availability and greater O(2) extraction evidenced by the greater HHb amplitude and HHb/Vo(2)(p) ratio following prior heavy-intensity exercise.  相似文献   

6.
We used 31P-magnetic resonance spectroscopy to test the hypothesis that exercise-induced muscle damage (EIMD) alters the muscle metabolic response to dynamic exercise, and that this contributes to the observed reduction in exercise tolerance following EIMD in humans. Ten healthy, physically active men performed incremental knee extensor exercise inside the bore of a whole body 1.5-T superconducting magnet before (pre) and 48 h after (post) performing 100 squats with a load corresponding to 70% of body mass. There were significant changes in all markers of muscle damage [perceived muscle soreness, creatine kinase activity (434% increase at 24 h), and isokinetic peak torque (16% decrease at 24 h)] following eccentric exercise. Muscle phosphocreatine concentration ([PCr]) and pH values during incremental exercise were not different pre- and post-EIMD (P > 0.05). However, resting inorganic phosphate concentration ([P(i)]; pre: 4.7 ± 0.8; post: 6.7 ± 1.7 mM; P < 0.01) and, consequently, [P(i)]/[PCr] values (pre: 0.12 ± 0.02; post: 0.18 ± 0.05; P < 0.01) were significantly elevated following EIMD. These mean differences were maintained during incremental exercise (P < 0.05). Time to exhaustion was significantly reduced following EIMD (519 ± 56 and 459 ± 63 s, pre- and post-EIMD, respectively, P < 0.001). End-exercise pH (pre: 6.75 ± 0.04; post: 6.83 ± 0.04; P < 0.05) and [PCr] (pre: 7.2 ± 1.7; post: 14.5 ± 2.1 mM; P < 0.01) were higher, but end-exercise [P(i)] was not significantly different (pre: 19.7 ± 1.9; post: 21.1 ± 2.6 mM, P > 0.05) following EIMD. The results indicate that alterations in phosphate metabolism, specifically the elevated [P(i)] at rest and throughout exercise, may contribute to the reduced exercise tolerance observed following EIMD.  相似文献   

7.
To differentiate the effects of high energy phosphates, pH, and [H2PO4-] on skeletal muscle fatigue, intracellular acidosis during handgrip exercise was attenuated by prolonged submaximal exercise. Healthy human subjects (n = 6) performed 5-min bouts of maximal rhythmic handgrip (RHG) before (CONTROL) and after prolonged (60-min) handgrip exercise (ATTEN-EX) designed to attenuate lactic acidosis in active muscle by partially depleting muscle glycogen. Concentrations of free intracellular phosphocreatine ([PCr]), adenosine triphosphate ([ATP]), and orthophosphate ([P(i)]) and pH were measured by 31P nuclear magnetic resonance spectroscopy and used to calculate adenosine diphosphate [ADP], [H2PO4-], and [HPO4(2-)]. Handgrip force output was measured with a dynamometer, and fatigue was determined by loss of maximal contractile force. After ATTEN-EX, the normal exercise-induced muscle acidosis was reduced. At peak CONTROL RHG, pH fell to 6.3 +/- 0.1 (SE) and muscle fatigue was correlated with [PCr] (r = 0.83), [P(i)] (r = 0.82), and [H2PO4-] (r = 0.81); [ADP] was 22.0 +/- 5.7 mumol/kg. At peak RHG after ATTEN-EX, pH was 6.9 +/- 0.1 and [ADP] was 116.1 +/- 18.2 mumol/kg, although [PCr] and [P(i)] were not different from CONTROL RHG (P greater than 0.05). After ATTEN-EX, fatigue correlated most closely with [ADP] (r = 0.84). The data indicate that skeletal muscle fatigue 1) is multifactorial, 2) can occur without decreased pH or increased [H2PO4-], and 3) is correlated with [ADP] after exercise-induced glycogen depletion.  相似文献   

8.
The adaptation of pulmonary O(2) uptake (Vo(2)(p)) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between Vo(2)(p) kinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young (n = 7) and older (n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to approximately 90% of estimated lactate threshold. Phase 2 Vo(2)(p) kinetics were slower (P < 0.05) in older (tau = 40 +/- 17 s) compared with young (tau = 21 +/- 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater (P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater (P < 0.05) in older compared with young adults. In young adults, PDH activity increased (P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase (P > 0.05) at 30 s of exercise but was elevated (P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given Vo(2)(p) in older adults, and there was a similar time course of HHb accompanying the slower Vo(2)(p) kinetics in the older adults, suggesting a slower adaptation of bulk O(2) delivery in older adults. In conclusion, the slower adaptation of Vo(2)(p) in older adults is likely a result of both an increased metabolic inertia and lower O(2) availability.  相似文献   

9.
During heavy-intensity exercise, the mechanisms responsible for the continued slow decline in phosphocreatine concentration ([PCr]) (PCr slow component) have not been established. In this study, we tested the hypothesis that a reduced intracellular acidosis would result in a greater oxidative flux and, consequently, a reduced magnitude of the PCr slow component. Subjects (n = 10) performed isotonic wrist flexion in a control trial and in an induced alkalosis (Alk) trial (0.3g/kg oral dose of NaHCO3, 90 min before testing). Wrist flexion, at a contraction rate of 0.5 Hz, was performed for 9 min at moderate- (75% of onset of acidosis; intracellular pH threshold) and heavy-intensity (125% intracellular pH threshold) exercise. 31P-magnetic resonance spectroscopy was used to measure intracellular [H+], [PCr], [Pi], and [ATP]. The initial recovery data were used to estimate the rate of ATP synthesis and oxidative flux at the end of heavy-intensity exercise. In repeated trials, venous blood sampling was used to measure plasma [H+], [HCO3-], and [Lac-]. Throughout rest and exercise, plasma [H+] was lower (P < 0.05) and [HCO3-] was elevated (P < 0.05) in Alk compared with control. During the final 3 min of heavy-intensity exercise, Alk caused a lower (P < 0.05) intracellular [H+] [246 (SD 117) vs. 291 nmol/l (SD 129)], a greater (P < 0.05) [PCr] [12.7 (SD 7.0) vs. 9.9 mmol/l (SD 6.0)], and a reduced accumulation of [ADP] [0.065 (SD 0.031) vs. 0.098 mmol/l (SD 0.059)]. Oxidative flux was similar (P > 0.05) in the conditions at the end of heavy-intensity exercise. In conclusion, our results are consistent with a reduced intracellular acidosis, causing a decrease in the magnitude of the PCr slow component. The decreased PCr slow component in Alk did not appear to be due to an elevated oxidative flux.  相似文献   

10.
The relationship between the adjustment of muscle deoxygenation (Δ[HHb]) and phase II V(O(2p)) during moderate-intensity exercise was examined before (Mod 1) and after (Mod 2) a bout of heavy-intensity "priming" exercise. Moderate intensity V(O(2p)) and Δ[HHb] kinetics were determined in 18 young males (26 ± 3 yr). V(O(2p)) was measured breath-by-breath. Changes in Δ[HHb] of the vastus lateralis muscle were measured by near-infrared spectroscopy. V(O(2p)) and Δ[HHb] response profiles were fit using a monoexponential model, and scaled to a relative % of the response (0-100%). The Δ[HHb]/Vo(2) ratio for each individual (reflecting the local matching of O(2) delivery to O(2) utilization) was calculated as the average Δ[HHb]/Vo(2) response from 20 s to 120 s during the exercise on-transient. Phase II τV(O(2p)) was reduced in Mod 2 compared with Mod 1 (P < 0.05). The effective τ'Δ[HHb] remained the same in Mod 1 and Mod 2 (P > 0.05). During Mod 1, there was an "overshoot" in the Δ[HHb]/Vo(2) ratio (1.08; P < 0.05) that was not present during Mod 2 (1.01; P > 0.05). There was a positive correlation between the reduction in the Δ[HHb]/Vo(2) ratio and the smaller τV(O(2p)) from Mod 1 to Mod 2 (r = 0.78; P < 0.05). This study showed that a smaller τV(O(2p)) during a moderate bout of exercise subsequent to a heavy-intensity priming exercise was associated with improved microvascular O(2) delivery during the on-transient of exercise, as suggested by a smaller Δ[HHb]/Vo(2) ratio.  相似文献   

11.
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.  相似文献   

12.
The purpose was to examine the adaptation of pulmonary O(2) uptake (Vo(2p)) and deoxygenation of the vastus lateralis muscle at the onset of heavy-intensity, constant-load cycling exercise in young (Y; 24 +/- 4 yr; mean +/- SD; n = 5) and older (O; 68 +/- 3 yr; n = 6) adults. Subjects performed repeated transitions on 4 separate days from 20 W to a work rate corresponding to heavy-intensity exercise. Vo(2p) was measured breath by breath. The concentration changes in oxyhemoglobin, deoxyhemoglobin (HHb), and total hemoglobin/myoglobin were determined by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo(2p) data were filtered, interpolated to 1 s, and averaged to 5-s bins. HHb-near-infrared spectroscopy data were filtered and averaged to 5-s bins. A monoexponential model was used to fit Vo(2p) [phase 2, time constant (tau) of Vo(2p)] and HHb [following the time delay (TD) from exercise onset to the start of an increase in HHb] data. The tauVo(2p) was slower (P < 0.001) in O (49 +/- 8 s) than Y (29 +/- 4 s). The HHb TD was similar in O (8 +/- 3 s) and Y (7 +/- 1 s); however, the tau HHb following TD was faster (P < 0.05) in O (8 +/- 2 s) than Y (14 +/- 2 s). The slower Vo(2p) kinetics and faster muscle deoxygenation in O compared with Y during heavy-intensity exercise imply that the kinetics of muscle perfusion are slowed relatively more than those of Vo(2p) in O. This suggests that the slowed Vo(2p) kinetics in O may be a consequence of a slower adaptation of local muscle blood flow relative to that in Y.  相似文献   

13.
Increases in the concentration of interstitial potassium concentration during exercise may play a role in the modulation of the cardiovascular response to exercise. However, it is not known if changes in potassium correlate with indexes of muscle reflex engagement. Eight healthy subjects performed dynamic [rhythmic handgrip (RHG)] and static handgrip (SHG) exercise at 40% of maximal voluntary contraction. Forearm circulatory arrest was performed to assess the metaboreceptor component of the exercise pressor reflex. Mean arterial pressure (MAP) and muscle sympathetic nerve activity (MSNA) were measured during each exercise paradigm. Venous plasma potassium concentrations ([K(+)](V)) were measured and used as a surrogate marker for interstitial potassium. [K(+)](V) were measured at baseline and at 1-min intervals during dynamic handgrip. During SHG, [K(+)](V) were measured at baseline, 30 and 90 s of exercise, and twice during forearm circulatory arrest. Mean [K(+)](V) was 3.6 mmol/l at rest before both paradigms. During RHG, [K(+)](V) rose by approximately 1.0 mmol/l by min 2 and remained constant throughout the rest of handgrip. During SHG, [K(+)](V) rose significantly at 30 s and rose an additional approximately 1.0 mmol/l by peak exercise. MAP and MSNA rose during both exercise paradigms. During posthandgrip circulatory arrest (PHG-CA), MSNA and blood pressure remained above baseline. [K(+)](V) and MSNA did not correlate during either exercise paradigm. Moreover, during PHG-CA, there was clear dissociation of MSNA from [K(+)](V). These data suggest that potassium does not play a direct role in the maintenance of the exercise pressor reflex.  相似文献   

14.
Sympathetic nervous system restraint of skeletal muscle blood flow during dynamic exercise has been well documented. However, whether sympathetic restraint of muscle blood flow persists and is constant throughout prolonged exercise has not been established. We hypothesized that both alpha1- and alpha2-adrenergic receptors would restrain skeletal muscle blood flow throughout prolonged constant-load exercise and that the restraint would increase as a function of exercise duration. Mongrel dogs were instrumented chronically with transit-time flow probes on the external iliac arteries and an indwelling catheter in a branch of the femoral artery. Flow-adjusted doses of selective alpha1- (prazosin) and alpha2-adrenergic receptor (rauwolscine) antagonists were infused after 5, 30, and 50 min of treadmill exercise at 3 and 6 miles/h. During mild-intensity exercise (3 miles/h), prazosin infusion resulted in a greater (P < 0.05) increase in vascular conductance (VC) after 5 [42% (SD 6)], compared with 30 [28% (SD 6)] and 50 [28% (SD 8)] min of running. In contrast, prazosin resulted in a similar increase in VC after 5 [29% (SD 10)], 30 [24% (SD 9)], and 50 [22% (SD 9)] min of moderate-intensity (6 miles/h) exercise. Rauwolscine infusion resulted in a greater (P < 0.05) increase in VC after 5 [39% (SD 14)] compared with 30 [26% (SD 9)] and 50 [22% (SD 4)] min of exercise at 3 miles/h. Rauwolscine infusion produced a similar increase in VC after 5 [19% (SD 3)], 30 [15% (SD 6)], and 50 [16% (SD 2)] min of exercise at 6 miles/h. These results suggest that the ability of alpha1- and alpha2-adrenergic receptors to produce vasoconstriction and restrain blood flow to active muscles may be influenced by both the intensity and duration of exercise.  相似文献   

15.
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.  相似文献   

16.
The relationship between muscle deoxygenation and activation was examined in three different muscles of the quadriceps during cycling ramp exercise. Seven young male adults (24 ± 3 yr; mean ± SD) pedaled at 60 rpm to exhaustion, with a work rate (WR) increase of 20 W/min. Pulmonary oxygen uptake was measured breath-by-breath, while muscle deoxygenation (HHb) and activity were measured by time-resolved near-infrared spectroscopy (NIRS) and surface electromyography (EMG), respectively, at the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM). Muscle deoxygenation was corrected for adipose tissue thickness and normalized to the amplitude of the HHb response, while EMG signals were integrated (iEMG) and normalized to the maximum iEMG determined from maximal voluntary contractions. Muscle deoxygenation and activation were then plotted as a percentage of maximal work rate (%WR(max)). The HHb response for all three muscle groups was fitted by a sigmoid function, which was determined as the best fitting model. The c/d parameter for the sigmoid fit (representing the %WR(max) at 50% of the total amplitude of the HHb response) was similar between VL (47 ± 12% WR(max)) and VM (43 ± 11% WR(max)), yet greater (P < 0.05) for RF (65 ± 13% WR(max)), demonstrating a "right shift" of the HHb response compared with VL and VM. The iEMG also showed that muscle activation of the RF muscle was lower (P < 0.05) compared with VL and VM throughout the majority of the ramp exercise, which may explain the different HHb response in RF. Therefore, these data suggest that the sigmoid function can be used to model the HHb response in different muscles of the quadriceps; however, simultaneous measures of muscle activation are also needed for the HHb response to be properly interpreted during cycle ramp exercise.  相似文献   

17.
Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K(+) regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O(2) fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude approximately 600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na(+)-K(+)-ATPase activity [K(+)-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na(+)-K(+)-ATPase content ([(3)H]ouabain binding sites). 3-O-MFPase activity was decreased by -2.9 +/- 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (-13.0 +/- 3.2 and -11.8 +/- 1.5%, respectively). Plasma K(+) concentration during exercise was unchanged by LHTL; [(3)H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na(+)-K(+)-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K(+) regulation or total work performed.  相似文献   

18.
The AMP-activated protein kinase (AMPK) cascade has been linked to many of the acute effects of exercise on skeletal muscle substrate metabolism, as well as to some of the chronic training-induced adaptations. We determined the effect of 3 wk of intensified training (HIT; 7 sessions of 8 x 5 min at 85% Vo2 peak) in skeletal muscle from well-trained athletes on AMPK responsiveness to exercise. Rates of whole body substrate oxidation were determined during a 90-min steady-state ride (SS) pre- and post-HIT. Muscle metabolites and AMPK signaling were determined from biopsies taken at rest and immediately after exercise during the first and seventh HIT sessions, performed at the same (absolute) pre-HIT work rate. HIT decreased rates of whole body carbohydrate oxidation (P < 0.05) and increased rates of fat oxidation (P < 0.05) during SS. Resting muscle glycogen and its utilization during intense exercise were unaffected by HIT. However, HIT induced a twofold decrease in muscle [lactate] (P < 0.05) and resulted in tighter metabolic regulation, i.e., attenuation of the decrease in the PCr/(PCr + Cr) ratio and of the increase in [AMPfree]/ATP. Resting activities of AMPKalpha1 and -alpha2 were similar post-HIT, with the magnitude of the rise in response to exercise similar pre- and post-HIT. AMPK phosphorylation at Thr172 on both the alpha1 and alpha2 subunits increased in response to exercise, with the magnitude of this rise being similar post-HIT. Acetyl-coenzyme A carboxylase-beta phosphorylation was similar at rest and, despite HIT-induced increases in whole body rates of fat oxidation, did not increase post-HIT. Our results indicate that, in well-trained individuals, short-term HIT improves metabolic control but does not blunt AMPK signaling in response to intense exercise.  相似文献   

19.
Previous studies in isolated muscle preparations have shown that muscle blood flow becomes compromised at higher contraction frequencies. The purpose of this study was to examine the effect of increases in contraction frequency and muscle tension on mean blood flow (MBF) during voluntary exercise in humans. Nine male subjects [23.6 +/- 3.7 (SD) yr] performed incremental knee extension exercise to exhaustion in the supine position at three contraction frequencies [40, 60, and 80 contractions/min (cpm)]. Mean blood velocity of the femoral artery was determined beat by beat using Doppler ultrasound. MBF was calculated by using the diameter of the femoral artery determined at rest using echo Doppler ultrasound. The work rate (WR) achieved at exhaustion was decreased (P < 0.05) as contraction frequency increased (40 cpm, 16.2 +/- 1.4 W; 60 cpm, 14.8 +/- 1.4 W; 80 cpm, 13.2 +/- 1.3 W). MBF was similar across the contraction frequencies at rest and during the first WR stage but was higher (P < 0.05) at 40 than 80 cpm at exercise intensities >5 W. MBF was similar among contraction frequencies at exhaustion. In humans performing knee extension exercise in the supine position, muscle contraction frequency and/or muscle tension development may appreciably affect both the MBF and the amplitude of the contraction-to-contraction oscillations in muscle blood flow.  相似文献   

20.
This study examined the separate and combined effects of acute hypoxia (Hypo) and heavy-intensity "priming" exercise (Hvy) on pulmonary O(2) uptake (Vo(2p)) kinetics during moderate-intensity exercise (Mod). Breath-by-breath Vo(2p) and near-infrared spectroscopy-derived muscle deoxygenation {deoxyhemoglobin concentration [HHb]} were monitored continuously in 10 men (23 ± 4 yr) during repetitions of a Mod 1-Hvy-Mod 2 protocol, where each of the 6-min (Mod or Hvy) leg-cycling bouts was separated by 6 min at 20 W. Subjects were exposed to Hypo [fraction of inspired O(2) (Fi(O(2))) = 15%, Mod 2 + Hypo] or "sham" (Fi(O(2)) = 20.9%, Mod 2-N) 2 min following Hvy in half of these repetitions; Mod was also performed in Hypo without Hvy (Mod 1 + Hypo). On-transient Vo(2p) and [HHb] responses were modeled as a monoexponential. Data were scaled to a relative percentage of the response (0-100%), the signals were time-aligned, and the individual [HHb]-to-Vo(2) ratio was calculated. Compared with control (Mod 1), τVo(2p) and the O(2) deficit (26 ± 7 s and 638 ± 144 ml, respectively) were reduced (P < 0.05) in Mod 2-N (20 ± 5 s and 529 ± 196 ml) and increased (P < 0.05) in Mod 1 + Hypo (34 ± 14 s and 783 ± 184 ml); in Mod 2 + Hypo, τVo(2p) was increased (30 ± 8 s, P < 0.05), yet O(2) deficit was unaffected (643 ± 193 ml, P > 0.05). The modest "overshoot" in the [HHb]-to-Vo(2) ratio (reflecting an O(2) delivery-to-utilization mismatch) in Mod 1 (1.06 ± 0.04) was abolished in Mod 2-N (1.00 ± 0.05), persisted in Mod 2 + Hypo (1.09 ± 0.07), and tended to increase in Mod 1 + Hypo (1.10 ± 0.09, P = 0.13). The present data do not support an "O(2) delivery-independent" speeding of τVo(2p) following Hvy (or Hvy + Hypo); rather, this study suggests that local muscle O(2) delivery likely governs the rate of adjustment of Vo(2) at τVo(2p) greater than ~20 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号