首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate ‘switch'' with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.  相似文献   

4.
Abstract Testosterone underlies the expression of most secondary sexual traits, playing a key role in sexual selection. However, high levels might be associated with physiological costs, such as immunosuppression. Immunostimulant carotenoids underpin the expression of many red‐yellow ornaments, but are regulated by testosterone and constrained by parasites. We manipulated testosterone and nematode burdens in red grouse (Lagopus lagopus scoticus) in two populations to tease apart their effects on carotenoid levels, ornament size and colouration in three time‐step periods. We found no evidence for interactive effects of testosterone and parasites on ornament size and colouration. We showed that ornament colouration was testosterone‐driven. However, parasites decreased comb size with a time delay and testosterone increased carotenoid levels in one of the populations. This suggests that environmental context plays a key role in determining how individuals resolve the trade‐off between allocating carotenoids for ornamental coloration or for self‐maintenance needs. Our study advocates that adequately testing the mechanisms behind the production or maintenance of secondary sexual characters has to take into account the dynamics of sexual trait expression and their environmental context.  相似文献   

5.
Populations of isogenic cells often respond coherently to signals, despite differences in protein abundance and cell state. Previously, we uncovered processes in the Saccharomyces cerevisiae pheromone response system (PRS) that reduced cell‐to‐cell variability in signal strength and cellular response. Here, we screened 1,141 non‐essential genes to identify 50 “variability genes”. Most had distinct, separable effects on strength and variability of the PRS, defining these quantities as genetically distinct “axes” of system behavior. Three genes affected cytoplasmic microtubule function: BIM1, GIM2, and GIM4. We used genetic and chemical perturbations to show that, without microtubules, PRS output is reduced but variability is unaffected, while, when microtubules are present but their function is perturbed, output is sometimes lowered, but its variability is always high. The increased variability caused by microtubule perturbations required the PRS MAP kinase Fus3 and a process at or upstream of Ste5, the membrane‐localized scaffold to which Fus3 must bind to be activated. Visualization of Ste5 localization dynamics demonstrated that perturbing microtubules destabilized Ste5 at the membrane signaling site. The fact that such microtubule perturbations cause aberrant fate and polarity decisions in mammals suggests that microtubule‐dependent signal stabilization might also operate throughout metazoans.  相似文献   

6.
7.
Enzyme libraries displayed on the surface of microbial cells or microbeads can be screened with fluorogenic substrates that provide a physical linkage of the reaction product to the corresponding enzyme. Libraries exceeding 10(9) different variants can be quantitatively analysed and screened by flow cytometry at a rate of 30 000 cells/second. The promise of screening methods based on fluorescence-activated cell sorting for directed enzyme evolution is being realized and significantly improved enzymes have been reported recently.  相似文献   

8.
9.
10.
Polyamines (PAs) are a group of nitrogen‐rich dissolved organic nitrogen (DON) compounds that are ubiquitously distributed in marine environments. To identify bacteria that are involved in PA transformations, coastal bacterioplankton microcosms were amended with a single PA model compound, i.e. putrescine (PUT) or spermidine (SPD), or with no addition as controls (CTRs). Bromodeoxyuridine (BrdU) was added to all the microcosms to label newly synthesized DNAs. Fluorescence‐activated cell sorting (FACS) analysis indicated significant increases in numbers of total cells and cells with both high and low levels of BrdU incorporation in the PUT and SPD microcosms, but not in the CTRs. 16S rDNA pyrotag sequencing of FACS‐sorted cells indicated that PUT‐ and SPD‐transforming bacteria were composed similarly of a diverse group of taxa affiliated with Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (especially Roseobacter of its alpha lineage). Broad taxonomic distribution of PA‐transforming bacteria was also indicated by the abundance and distribution of PA transporter gene homologues in a survey of sequenced marine bacterial genomes. Our results suggest that PAs may be common DON substrates for marine bacterioplankton, in line with the hypothesis that bacterially mediated PA transformation accounts for an important proportion of marine DON flux.  相似文献   

11.
The ability to recognize self and to recognize partnering cells allows microorganisms to build social networks that perform functions beyond the capabilities of the individual. In bacteria, recognition typically involves genetic determinants that provide cell surface receptors or diffusible signalling chemicals to identify proximal cells at the molecular level that can participate in cooperative processes. Social networks also rely on discriminating mechanisms to exclude competing cells from joining and exploiting their groups. In addition to their appropriate genotypes, cell‐cell recognition also requires compatible phenotypes, which vary according to environmental cues or exposures as well as stochastic processes that lead to heterogeneity and potential disharmony in the population. Understanding how bacteria identify their social partners and how they synchronize their behaviours to conduct multicellular functions is an expanding field of research. Here, we review recent progress in the field and contrast the various strategies used in recognition and behavioural networking.  相似文献   

12.
13.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

14.
Background Isolation of spermatogonial stem cells (SSCs) could enable in vitro approaches for exploration of spermatogonial physiology and therapeutic approaches for fertility preservation. SSC isolation from adult testes is difficult due to low cell numbers and lacking cell surface markers. Glial cell‐derived neurotrophic factor family receptor alpha‐1 (GFRα1) plays a crucial role for the maintenance of SSCs in rodents and is expressed in monkey spermatogonia. Methods Magnetic activated cell sorting was employed for the enrichment of GFRα1+ spermatogonia from adult primate testes. Results Magnetic activated cell sorting of monkey cells enriched GFRα1+ cells threefold. 11.4% of GFRα1+ cells were recovered. 42.9% of GFRα1+ cells were recovered in sorted fractions of human testicular cells, representing a fivefold enrichment. Interestingly, a high degree of morphological heterogeneity among the GFRα1+ cells from human testes was observed. Conclusions Magnetic activated cell sorting using anti‐GFRα1 antibodies provides an enrichment strategy for spermatogonia from monkey and human testes.  相似文献   

15.
To advance the utilization of microalgae as a viable feedstock for biodiesel production, the intracellular lipid content of three strains of the marine microalgae Nannochloropsis sp. was enhanced using flow cytometry (FC) coupled with cell sorting. Total lipid content was doubled to 55% (biomass dry weight) in the sorted, daughter cells of Nannochloropsis (strain 47) after consecutive three rounds of cell sorting, and this trait was maintained for approximately 100 subsequent cell generations. In addition, daughter cells had a fatty acid profile similar to that of the parent, wild‐type strain. The study demonstrates that FC coupled with cell sorting is a powerful tool for the enhancement of intracellular lipid content in microalgae exploited for biodiesel feedstock.  相似文献   

16.
Coral reefs are the most biodiverse of all marine ecosystems. Bacteria are known to be abundant and active in seawater around corals, inside coral tissues, and within their surface microlayer. Very little is known, however, about the structure, composition and maintenance of these bacterial communities. In the current study we characterize the culturable bacterial community within the mucus of healthy specimens of the Red Sea solitary coral Fungia scutaria. This was achieved using culture-based methods and molecular techniques for the identification of the bacterial isolates. More than 30% of the isolated bacteria were novel species and a new genus. The culturable heterotrophic bacterial community of the mucus of this coral is composed mainly of the bacterial groups Gammaproteobacteria, Alphaproteobacteria and of Actinobacteria. This study provides the first evidence of actinomycetes isolated from corals.  相似文献   

17.
18.
Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue—DISSECT) that preserves native signaling for Cytometry Time-of-Flight (CyTOF) and fluorescent flow cytometry applications. A 21-plex CyTOF analysis encompassing core signaling and cell-identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor-alpha (TNF-α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF-α-induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p-ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact-dependent survival. Our novel single-cell approach can broadly be applied, using both CyTOF and multi-parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues.  相似文献   

19.
The Black Sea chemocline represents the largest extant habitat of anoxygenic phototrophic bacteria and harbours a monospecific population of Chlorobium phylotype BS‐1. High‐sensitivity measurements of underwater irradiance and sulfide revealed that the optical properties of the overlying water column were similar across the Black Sea basin, whereas the vertical profiles of sulfide varied strongly between sampling sites and caused a dome‐shaped three‐dimensional distribution of the green sulfur bacteria. In the centres of the western and eastern basins the population of BS‐1 reached upward to depths of 80 and 95 m, respectively, but were detected only at 145 m depth close to the shelf. Using highly concentrated chemocline samples from the centres of the western and eastern basins, the cells were found to be capable of anoxygenic photosynthesis under in situ light conditions and exhibited a photosynthesis–irradiance curve similar to low‐light‐adapted laboratory cultures of Chlorobium BS‐1. Application of a highly specific RT‐qPCR method which targets the internal transcribed spacer (ITS) region of the rrn operon of BS‐1 demonstrated that only cells at the central station are physiologically active in contrast to those at the Black Sea periphery. Based on the detection of ITS‐DNA sequences in the flocculent surface layer of deep‐sea sediments across the Black Sea, the population of BS‐1 has occupied the major part of the basin for the last decade. The continued presence of intact but non‐growing BS‐1 cells at the periphery of the Black Sea indicates that the cells can survive long‐distant transport and exhibit unusually low maintenance energy requirements. According to laboratory measurements, Chlorobium BS‐1 has a maintenance energy requirement of ~1.6–4.9·10?15 kJ cell?1 day?1 which is the lowest value determined for any bacterial culture so far. Chlorobium BS‐1 thus is particularly well adapted to survival under the extreme low‐light conditions of the Black Sea, and can be used as a laboratory model to elucidate general cellular mechanisms of long‐term starvation survival. Because of its adaptation to extreme low‐light marine environments, Chlorobium BS‐1 also represents a suitable indicator for palaeoceanography studies of deep photic zone anoxia in ancient oceans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号