首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Results of the present study indicate that (1) ethacrynic acid, dihydroethacrynic acid, and the cysteine adduct of ethacrynic acid inhibit plasma membrane-bound adenylate cyclase from canine renal medulla; (2) reaction with a sulfhydryl group is not essential for inhibition by ethacrynic acid and its derivatives, but may contribute quantitatively to the inhibition; and (3) cysteine enhances the activity of renal medullary adenylate cyclase in the presence of a vasopressin analog or sodium fluoride.Observations support the view that ethacrynic acid and its cysteine adduct interfere with the action of vasopressin on the distal nephron at the site of renal medullary adenylate cyclase.  相似文献   

7.
This study was undertaken to elucidate the mechanism(s) of cross-resistance (4.9-fold) to mitomycin C (MMC) in a multi-drug-resistant cell line, P388/R-84. Intracellular accumulation of MMC by sensitive (P388/S) and P388/R-84 cells was comparable. Despite a 32% reduction in NADPH cytochrome P-450 reductase activity (responsible for MMC activation) in P388/R-84 cells, the rate of MMC bio-reduction by sensitive and resistant cells was similar. These results suggested that MMC resistance in P388/R-84 cell line must depend on factors other than impaired drug accumulation or bio-activation. Recent studies suggest that glutathione transferase (GST) dependent drug detoxification also contributes to cellular resistance of a variety of alkylating agents. Even though overexpression of GST has been noted in some MMC resistant tumor cells, it is not known if its level affects sensitivity to MMC. We have, therefore, determined the effect of ethacrynic acid (an inhibitor of GST activity) treatment on MMC cytotoxicity in P388/R-84 cells, which have about 2-fold higher GST activity than P388/S cells. The IC50 value for the inhibition of GST activity in vitro by ethacrynic acid (EA) was 16.5 microM (5 micrograms/ml). A depletion in intracellular GSH was also observed by treating P388/R-84 cells with EA alone or in combination with MMC. A non-toxic concentration of EA (1 microgram/ml; 3.3 microM) increased MMC cytotoxicity by 36% in P388/R-84 cells. MMC cytotoxicity was increased 2-fold by EA treatment in glutathione (GSH)-depleted P388/R-84 cells. These results suggest that GST mediated drug inactivation may represent another important mechanism of MMC resistance.  相似文献   

8.
The purpose of this study was to synthesize a novel prodrug of ethacrynic acid (ECA) with short chain polyethylene glycols (PEGs) and codrugs of ECA with the beta-adrenergic blocking agent atenolol (ATL) or timolol (TML) to overcome the adverse effects of ECA and to enhance its physicochemical properties.  相似文献   

9.
10.
11.
12.
13.
The transport system for organic acids in the kidney is not fully developed in the neonatal period. The effect of repeated administrations of ethacrynic acid on the renal excretion of p-aminohippurate (PAH) was studied in rats of different ages. Pretreatment with ethacrynic acid was followed by an increase in the renal excretion of PAH in 33-, 55-, 105- and 240-day-old rats but not in newborn rats. In 55-day-old rats the increase in renal excretion of PAH after pretreatment with ethacrynic acid was not associated with any consistent change of the glomerular filtration rate. It is concluded from these results that the stimulation of transport processes in the kidney by ethacrynic acid and some other drugs is linked with their affinity to tissue proteins.  相似文献   

14.
The presence of ethacrynic acid in the nutrient sulphate solution produces, generally in less than 3 min, a decrease in resistance accompanied by an increase in transmucosal PD. These results strongly suggest that the dominant effect of ethacrynic acid is not on the Na+ pathway of the nutrient membrane, but without further knowledge of the resistance of other ionic pathways, it cannot be inferred whether the effect predominates on the K+ pathway as in Cl- media.  相似文献   

15.
Mitochondrial fusion and fission are important aspects of eukaryotic cell function that permit the adoption of varied mitochondrial morphologies depending upon cellular physiology. We previously observed that ethacrynic acid (EA) induced mitochondrial fusion in cultured BSC-1 and CHO/wt cells. However, the mechanism responsible for it was not clear since EA has a number of known cellular effects including glutathione (GSH) depletion and alkylation of cysteine residues. To gain insight, we have tested the effects of a variety of compounds on EA induced cellular toxicity and mitochondrial fusion. N-acetyl cysteine (NAC), a GSH precursor, was found to abrogate both the toxic and fusion-inductive effects, whereas diethylmaleate (dEM), a GSH depletor, potentiated both these effects in a dose-dependent manner. However, treatment with dEM alone, which depleted GSH to the same degree as EA, did not induce mitochondrial fusion. These results indicate that although detoxification of EA via formation of GSH conjugates is dependant upon GSH levels, the depletion of GSH by EA is not responsible for its effect on mitochondrial fusion. Dihydro-EA (DH-EA), a saturated EA analogue, lacked EA's toxicity and effect on fusion, indicating that the alpha,beta-unsaturated ketone is central to its observed effects. N-ethylmaleimide (NEM), another well-known cysteine-alkylator, also induced mitochondrial fusion at near toxic concentrations. These data suggests that cysteine-alkylation is the causative factor for fusion and toxicity. In live BSC-1 cells, EA induced fusion of mitochondria occurred very rapidly (<20 min), which suggests that it is inducing fusion by modifying certain critical cysteine residue(s) in proteins involved in the process.  相似文献   

16.
Ethacrynic acid (ECA) lowers intraocular pressure (i.o.p.) by an effect usually ascribed to increased drainage of aqueous humor by the trabecular meshwork. Here, we describe the effects of a continuous 2-hr intracameral infusion of balanced salt solution (BSS), with or without 2 mM ECA (sodium salt), on IOP of pentobarbital anesthetized rats. The infusion was divided into a constant (0.05 microliter/min) and a periodic (0.25 microliter/min) component that cycled 4 min on then 4 min off. This permitted the calculation of dynamic changes in resistive (trabecular and uveoslceral drainage) and nonresistive (aqueous synthesis, episcleral venous pressure) components of IOP by fitting a second-order transfer function to the responses. ECA markedly blunted the BSS-induced rise in IOP (P < 0.01). The rise in resistive mechanisms (ocular impedance) was transiently blunted by ECA (P < 0.05) during the third and fourth 8-min cycles, and nonresistive mechanisms were reduced by ECA from cycles 3-10 (P < 0.05). Then, at the end of the infusion, the control and ECA dynamic values were similar (P < 0.05), although IOP of ECA-treated rats was still slightly reduced (P < 0.05). The most likely explanation is a summation of small changes in both resistive and nonresistive components of IOP dynamics. Systemic blood pressure was unchanged within either group. The well-known effects of ECA on the trabecular meshwork, alone, are insufficient to explain the dynamic changes in IOP observed in this model.  相似文献   

17.
18.
In this study, we examined the ability of human term placental lipoxygenase (HTPLO) to catalyze glutathione (GSH) conjugate formation from ethacrynic acid (EA) in the presence of linoleic acid (LA) and GSH. HTPLO purified by affinity chromatography was used in all the experiments. The results indicate that the process of EA-SG is enzymatic in nature. The reaction shows dependence on pH, the enzyme, and the concentration of GSH, LA, and EA. The optimal assay conditions to observe a maximal rate of EA-SG formation required the presence of 0.3 mM LA, 0.2 mM EA, 2.0 mM GSH, and approximately 300 microg HTPLO in the reaction medium buffered at pH 9.0. Under the experimental conditions employed, the reaction exhibited K(m) values of 1.1 mM, 200 microM, and 130 microM for GSH, LA, and EA, respectively. The estimated specific activity of HTPLO-catalyzed EA-GS formation was approximately 4.4 +/- 0.4 micromol/min/mg protein. This rate is more than twofold greater than the rate noted for the reaction mediated by the purified human term placental glutathione transferase. Under physiologically relevant conditions (20 microM LA, 2.0 mM GSH, at pH 7.4), HTPLO produced EA-SG at 56% of the maximal rate noted under optimal assay conditions. Nordihydroguaiaretic acid, the classical inhibitor of different lipoxygenases, significantly blocked the reaction. It is proposed that free radicals are involved in the process of EA-SG formation by HTPLO. The evidence gathered in this in vitro study suggests for the first time that lipoxygenase present in the human term placenta is capable of EA-SG formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号