首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymerase kappa (pol kappa) is a member of the Y-family of DNA polymerases that are thought to function in translesion synthesis (TLS) past different types of DNA damage. Here, we show that pol kappa-deficient mouse cells have substantially reduced (but not absent) levels of nucleotide excision repair (NER) of UV damage, as measured by several methods. Our results provide evidence for an unexpected role for pol kappa in mammalian NER.  相似文献   

2.
3.
Xeroderma pigmentosum (XP) patients are highly sensitive to sunlight, and they suffer from a high incidence of skin cancers. The variant form of XP results from mutations in the hRAD30A gene, which encodes the DNA polymerase in humans, hPol(eta). Of the eukaryotic DNA polymerases, only human Pol(eta) and its yeast counterpart have the ability to replicate DNA containing a cis-syn thymine-thymine (T-T) dimer. Here we measure the fidelity of hPol(eta) on all four nondamaged template bases and at each thymine residue of a cis-syn T-T dimer. Opposite all four nondamaged template bases, hPol(eta) misincorporates nucleotides with a frequency of approximately 10(-2)-10(-3), and importantly, hPol(eta) synthesizes DNA opposite the T-T dimer with the same accuracy and efficiency as opposite the nondamaged DNA. The low fidelity of hPol(eta) may derive from a flexible active site that renders the enzyme more tolerant of geometric distortions in DNA and enables it to synthesize DNA past a T-T dimer.  相似文献   

4.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   

5.
Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.  相似文献   

6.
Yang W 《FEBS letters》2005,579(4):868-872
Members of the Y-family of DNA polymerases catalyze template-dependent DNA synthesis but share no sequence homology with other known DNA polymerases. Y-family polymerases exhibit high error rates and low processivity when copying normal DNA but are able to synthesize DNA opposite damaged templates. In the past three years, much has been learned about this family of polymerases including determination of more than a dozen crystal structures with various substrates. In this short review, I will summarize the biochemical properties and structural features of Y-family DNA polymerases.  相似文献   

7.
8.
Cell survival depends not only on the ability to repair damaged DNA but also on the capability to perform DNA replication on unrepaired or imperfect templates. Crucial to this process are specialized DNA polymerases belonging to the Y family. These enzymes share a similar catalytic fold in their N-terminal region, and most of them have a less-well-conserved C-terminus which is not required for catalytic activity. Although this region is essential for appropriate localization and recruitment in vivo, its precise role during DNA synthesis remains unclear. Here we have compared the catalytic properties of AtPOLK, an Arabidopsis orthologue of mammalian pol kappa, and a truncated version lacking 193 amino acids from its C-terminus. We found that C-terminally truncated AtPOLK is a high-efficiency mutant protein, the DNA-binding capacity of which is not affected but it has higher catalytic efficiency and fidelity than the full-length enzyme. The truncated protein shows increased propensity to extend mispaired primer termini through misalignment and enhanced error-free bypass activity on DNA templates containing 7,8-dihydro-8-oxoGuanine. These results suggest that, in addition to facilitating recruitment to the replication fork, the C-terminus of Y-family DNA polymerases may also play a role in the kinetic control of their enzymatic activity.  相似文献   

9.
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase η (Polη), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Polη, we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Polη efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Polη effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant –1 deletion was also observed when the template base 5′ to the abasic site is a T. Human Polη partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N2-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N2-dG lesion in mammalian cells. These results show that human Polη is capable of error-prone translesion DNA syntheses in vitro and suggest that Polη may bypass certain lesions with a mutagenic consequence in humans.  相似文献   

10.
DNA polymerase eta (Poleta) functions in error-free replication of UV-damaged DNA, and in vitro it efficiently bypasses a cis-syn T-T dimer by incorporating two adenines opposite the lesion. Steady state kinetic studies have shown that both yeast and human Poleta are low-fidelity enzymes, and they misincorporate nucleotides with a frequency of 10(-2)-10(-3) on both undamaged and T-T dimer-containing DNA templates. To better understand the role of Poleta in error-free translesion DNA synthesis, here we examine the ability of Poleta to extend from base mismatches. We find that both yeast and human Poleta extend from mismatched base pairs with a frequency of approximately 10(-3) relative to matched base pairs. In the absence of efficient extension of mismatched primer termini, the ensuing dissociation of Poleta from DNA may favor the excision of mismatched nucleotides by a proofreading exonuclease. Thus, we expect DNA synthesis by Poleta to be more accurate than that predicted from the fidelity of nucleotide incorporation alone.  相似文献   

11.
Ling H  Boudsocq F  Woodgate R  Yang W 《Cell》2001,107(1):91-102
Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is a DinB homolog that belongs to the recently described Y-family of DNA polymerases, which are best characterized by their low-fidelity synthesis on undamaged DNA templates and propensity to traverse normally replication-blocking lesions. Crystal structures of Dpo4 in ternary complexes with DNA and an incoming nucleotide, either correct or incorrect, have been solved at 1.7 A and 2.1 A resolution, respectively. Despite a conserved active site and a hand-like configuration similar to all known polymerases, Dpo4 makes limited and nonspecific contacts with the replicating base pair, thus relaxing base selection. Dpo4 is also captured in the crystal translocating two template bases to the active site at once, suggesting a possible mechanism for bypassing thymine dimers.  相似文献   

12.
We describe here the error specificity of mammalian DNA polymerase eta (pol eta), an enzyme that performs translesion DNA synthesis and may participate in somatic hypermutation of immunoglobulin genes. Both mouse and human pol eta lack intrinsic proofreading exonuclease activity and both copy undamaged DNA inaccurately. Analysis of more than 1500 single-base substitutions by human pol eta indicates that error rates for all 12 mismatches are high and variable depending on the composition and symmetry of the mismatch and its location. pol eta also generates tandem base substitutions at an unprecedented rate, and kinetic analysis indicates that it extends a tandem double mismatch about as efficiently as other replicative enzymes extend single-base mismatches. This ability to use an aberrant primer terminus and the high rate of single and double-base substitutions support the idea that pol eta may forego strict shape complementarity in order to facilitate highly efficient lesion bypass. Relaxed discrimination is further indicated by pol eta infidelity for a wide variety of nucleotide deletion and addition errors. The nature and location of these errors suggest that some may be initiated by strand slippage, while others result from additional mechanisms.  相似文献   

13.
Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV). We constructed a recombinant adenovirus carrying the human POLH cDNA linked to the EGFP reporter gene (AdXPV-EGFP) and infected skin fibroblasts from both XPV and XPA patients. Twenty-four hours after infection, the DNA polymerase eta-EGFP fusion protein was detected by Western blot analysis, demonstrating successful transduction by the adenoviral vector. Protein expression was accompanied by reduction in the high sensitivity of XPV cells to UV, as determined by cell survival and apoptosis-induction assays. Moreover, the pronounced UV-induced inhibition of DNA synthesis in XPV cells and their arrest in S phase were attenuated in AdXPV-EGFP infected cells, confirming that the transduced polymerase was functional. However, over-expression of polymerase eta mediated by AdXPV-EGFP infection did not result in enhancement of cell survival, prevention of apoptosis, or higher rate of nascent DNA strand growth in irradiated XPA cells. These results suggest that TLS by DNA polymerase eta is not a limiting factor for recovery from cellular responses induced by UV in excision-repair deficient fibroblasts.  相似文献   

14.
Human DNA polymerase eta (hPoleta) functions in the error-free replication of UV-damaged DNA, and mutations in hPoleta cause cancer-prone syndrome, the variant form of xeroderma pigmentosum. However, in spite of its key role in promoting replication through a variety of distorting DNA lesions, the manner by which hPoleta is targeted to the replication machinery stalled at a lesion site remains unknown. Here, we provide evidence for the physical interaction of hPoleta with proliferating cell nuclear antigen (PCNA) and show that mutations in the PCNA binding motif of hPoleta inactivate this interaction. PCNA, together with replication factor C and replication protein A, stimulates the DNA synthetic activity of hPoleta, and steady-state kinetic studies indicate that this stimulation accrues from an increase in the efficiency of nucleotide insertion resulting from a reduction in the apparent K(m) for the incoming nucleotide.  相似文献   

15.
The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.  相似文献   

16.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta (pol eta), which is involved in the replication of damaged DNA. Pol eta catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol eta can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol eta preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol eta could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol eta could continue chain elongation, whereas pol alpha could not. Thus, the fidelity of translesion synthesis by human pol eta relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.  相似文献   

17.
Altered oxidative metabolism is a property of many tumor cells. Oxidation of DNA precursors, i.e., dNTP pool, as well as DNA is a major source of mutagenesis and carcinogenesis. Here, we report the remarkable nature of human DNA polymerase eta that incorporates oxidized dNTPs into a nascent DNA strand in an efficient and erroneous manner. The polymerase almost exclusively incorporated 8-hydroxy-dGTP (8-OH-dGTP) opposite template adenine (A) at 60% efficiency of normal dTTP incorporation, and incorporated 2-hydroxy-dATP (2-OH-dATP) opposite template thymine (T), guanine (G), or cytosine (C) at substantial rates. The synthetic primers having 8-hydroxy-G paired with template A or 2-hydroxy-A paired with template T, G, or C at the termini were efficiently extended. In contrast, human DNA polymerase iota incorporated 8-OH-dGTP opposite template A with much lower efficiency and did not incorporate 2-OH-dATP opposite any of the template bases. It did not extend the primers having the oxidized bases at the termini either. We propose that human DNA polymerase eta may participate in oxidative mutagenesis through the efficient and erroneous incorporation of oxidized dNTPs during DNA synthesis.  相似文献   

18.
gamma-Hydroxy-1,N(2)-propano-2'deoxyguanosine (gamma-HOPdG) is a major deoxyguanosine adduct derived from acrolein, a known mutagen. In vitro, this adduct has previously been shown to pose a severe block to translesion synthesis by a number of polymerases (pol). Here we show that both yeast and human pol eta can incorporate a C opposite gamma-HOPdG at approximately 190- and approximately 100-fold lower efficiency relative to the control deoxyguanosine and extend from a C paired with the adduct at approximately 8- and approximately 19-fold lower efficiency. Although DNA synthesis past gamma-HOPdG by yeast pol eta was relatively accurate, the human enzyme misincorporated nucleotides opposite the lesion with frequencies of approximately 10(-1) to 10(-2). Because gamma-HOPdG can adopt both ring closed and ring opened conformations, comparative replicative bypass studies were also performed with two model adducts, propanodeoxyguanosine and reduced gamma-HOPdG. For both yeast and human pol eta, the ring open reduced gamma-HOPdG adduct was less blocking than gamma-HOPdG, whereas the ring closed propanodeoxyguanosine adduct was a very strong block. Replication of DNAs containing gamma-HOPdG in wild type and xeroderma pigmentosum variant cells revealed a somewhat decreased mutation frequency in xeroderma pigmentosum variant cells. Collectively, the data suggest that pol eta might potentially contribute to both error-free and mutagenic bypass of gamma-HOPdG.  相似文献   

19.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

20.
Y-family DNA polymerases catalyze translesion DNA synthesis over damaged DNA. Each Y-family polymerase has a polymerase core consisting of a palm, finger and thumb domain in addition to a fourth domain known as a little finger domain. It is unclear how each domain moves during nucleotide incorporation and what type of conformational changes corresponds to the rate-limiting step previously reported in kinetic studies. Here, we present three crystal structures of the prototype Y-family polymerase: apo-Dpo4 at 1.9 Å resolution, Dpo4-DNA binary complex and Dpo4-DNA-dTMP ternary complex at 2.2 Å resolution. Dpo4 undergoes dramatic conformational changes from the apo to the binary structures with a 131° rotation of the little finger domain relative to the polymerase core upon DNA binding. This DNA-induced conformational change is verified in solution by our tryptophan fluorescence studies. In contrast, the polymerase core retains the same conformation in all three conformationally distinct states. Particularly, the finger domain which is responsible for checking base pairing between the template base and an incoming nucleotide retains a rigid conformation. The inflexibility of the polymerase core likely contributes to the low fidelity of Dpo4, in addition to its loose and solvent-accessible active site. Interestingly, while the binary and ternary complexes of Dpo4 retain an identical global conformation, the aromatic side chains of two conserved tyrosines at the nucleotide-binding site change orientations between the binary and ternary structures. Such local conformational changes may correspond to the rate-limiting step in the mechanism of nucleotide incorporation. Together, the global and local conformational transitions observed in our study provide a structural basis for the distinct kinetic steps of a catalytic cycle of DNA polymerization performed by a Y-family polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号