首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human DNA polymerases eta, kappa and iota are template-dependent, Y-family DNA polymerases that have been implicated in translesion DNA synthesis (TLS) in human cells. Here, we briefly review evidence that these exonuclease-deficient polymerases copy undamaged DNA with very low fidelity and unusual error specificity. Based on the base substitution specificity and other biochemical properties of DNA polymerases eta and iota, we consider the possibility that they participate in specialized DNA transactions that repair damaged DNA and/or generate mutations in the variable regions of immunoglobulin genes.  相似文献   

2.
Pol kappa and Rev1 are members of the Y family of DNA polymerases involved in tolerance to DNA damage by replicative bypass [translesion DNA synthesis (TLS)]. We demonstrate that mouse Rev1 protein physically associates with Pol kappa. We show too that Rev1 interacts independently with Rev7 (a subunit of a TLS polymerase, Pol zeta) and with two other Y-family polymerases, Pol iota and Pol eta. Mouse Pol kappa, Rev7, Pol iota and Pol eta each bind to the same approximately 100 amino acid C-terminal region of Rev1. Furthermore, Rev7 competes directly with Pol kappa for binding to the Rev1 C-terminus. Notwithstanding the physical interaction between Rev1 and Pol kappa, the DNA polymerase activity of each measured by primer extension in vitro is unaffected by the complex, either when extending normal primer-termini, when bypassing a single thymine glycol lesion, or when extending certain mismatched primer termini. Our observations suggest that Rev1 plays a role(s) in mediating protein-protein interactions among DNA polymerases required for TLS. The precise function(s) of these interactions during TLS remains to be determined.  相似文献   

3.
The Y-family of DNA polymerases support of translesion DNA synthesis (TLS) associated with stalled DNA replication by DNA damage. Recently, a number of studies suggest that some specialized TLS polymerases also support other aspects of DNA metabolism beyond TLS in vivo. Here we show that mouse polymerase kappa (Polκ) could accumulate at laser-induced sites of damage in vivo resembling polymerases eta and iota. The recruitment was mediated through Polκ C-terminus which contains the PCNA-interacting peptide, ubiquitin zinc finger motif 2 and nuclear localization signal. Interestingly, this recruitment was significantly reduced in MSH2-deficient LoVo cells and Rad18-depleted cells. We further observed that Polκ-deficient mouse embryo fibroblasts were abnormally sensitive to H2O2 treatment and displayed defects in both single-strand break repair and double-strand break repair. We speculate that Polκ may have an important role in strand break repair following oxidative stress in vivo.  相似文献   

4.
3-Methyl adenine (3meA), a minor-groove DNA lesion, presents a strong block to synthesis by replicative DNA polymerases (Pols). To elucidate the means by which replication through this DNA lesion is mediated in eukaryotic cells, here we carry out genetic studies in the yeast Saccharomyces cerevisiae treated with the alkylating agent methyl methanesulfonate. From the studies presented here, we infer that replication through the 3meA lesion in yeast cells can be mediated by the action of three Rad6-Rad18-dependent pathways that include translesion synthesis (TLS) by Pol(eta) or -zeta and an Mms2-Ubc13-Rad5-dependent pathway which presumably operates via template switching. We also express human Pols iota and kappa in yeast cells and show that they too can mediate replication through the 3meA lesion in yeast cells, indicating a high degree of evolutionary conservation of the mechanisms that control TLS in yeast and human cells. We discuss these results in the context of previous observations that have been made for the roles of Pols eta, iota, and kappa in promoting replication through the minor-groove N2-dG adducts.  相似文献   

5.
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases.  相似文献   

6.
Göhler T  Munoz IM  Rouse J  Blow JJ 《DNA Repair》2008,7(5):775-787
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.  相似文献   

7.
Most types of DNA damage block replication fork progression during DNA synthesis because replicative DNA polymerases are unable to accommodate altered DNA bases in their active sites. To overcome this block, eukaryotic cells employ specialized translesion synthesis (TLS) polymerases, which can insert nucleotides opposite damaged bases. In particular, TLS by DNA polymerase eta (poleta) is the major pathway for bypassing UV photoproducts. How the cell switches from replicative to TLS polymerase at the site of blocked forks is unknown. We show that, in human cells, PCNA becomes monoubiquitinated following UV irradiation of the cells and that this is dependent on the hRad18 protein. Monoubiquitinated PCNA but not unmodified PCNA specifically interacts with poleta, and we have identified two motifs in poleta that are involved in this interaction. Our findings provide an attractive mechanism by which monoubiquitination of PCNA might mediate the polymerase switch.  相似文献   

8.
Replicative DNA polymerases duplicate genomes in a very efficient and accurate mode. However their progression can be blocked by DNA lesions since they are unable to accommodate bulky damaged bases in their active site. In response to replication blockage, monoubiquitination of PCNA promotes the switch between replicative and specialized polymerases proficient to overcome the obstacle. In this study, we characterize novel connections between proteins involved in replication and TransLesion Synthesis (TLS). We demonstrate that PDIP38 (Polδ interacting protein of 38 kDa) directly interacts with the TLS polymerase Polη. Interestingly, the region of Polη interacting with PDIP38 is found to be located within the ubiquitin-binding zinc finger domain (UBZ) of Polη. We show that the depletion of PDIP38 increases the number of cells with Polη foci in the absence of DNA damage and diminishes cell survival after UV irradiation. In addition, PDIP38 is able to interact directly not only with Polη but also with the specialized polymerases Rev1 and Polζ (via Rev7). We thus suggest that PDIP38 serves as a mediator protein helping TLS Pols to transiently replace replicative polymerases at damaged sites.  相似文献   

9.
The use of translesion synthesis (TLS) polymerases to bypass DNA lesions during replication constitutes an important mechanism to restart blocked/stalled DNA replication forks. Because TLS polymerases generally have low fidelity on undamaged DNA, the cell must regulate the interaction of TLS polymerases with damaged versus undamaged DNA to maintain genome integrity. The Saccharomyces cerevisiae checkpoint proteins Ddc1, Rad17, and Mec3 form a clamp-like structure (the 9-1-1 clamp) that has physical similarity to the homotrimeric sliding clamp proliferating cell nuclear antigen, which interacts with and promotes the processivity of the replicative DNA polymerases. In this work, we demonstrate both an in vivo and in vitro physical interaction between the Mec3 and Ddc1 subunits of the 9-1-1 clamp and the Rev7 subunit of the Polzeta TLS polymerase. In addition, we demonstrate that loss of Mec3, Ddc1, or Rad17 results in a decrease in Polzeta-dependent spontaneous mutagenesis. These results suggest that, in addition to its checkpoint signaling role, the 9-1-1 clamp may physically regulate Polzeta-dependent mutagenesis by controlling the access of Polzeta to damaged DNA.  相似文献   

10.
DNA damage blocks the progression of the replication fork. In order to circumvent the damaged bases, cells employ specialized low stringency DNA polymerases, which are able to carry out translesion synthesis (TLS) past different types of damage. The five polymerases used in TLS in human cells have different substrate specificities, enabling them to deal with many different types of damaged bases. PCNA plays a central role in recruiting the TLS polymerases and effecting the polymerase switch from replicative to TLS polymerase. When the fork is blocked PCNA gets ubiquitinated. This increases its affinity for the TLS polymerases, which all have novel ubiquitin-binding motifs, thereby facilitating their engagement at the stalled fork to effect TLS.  相似文献   

11.
DNA polymerases (Pols) of the Y family rescue stalled replication forks by promoting replication through DNA lesions. Humans have four Y family Pols, eta, iota, kappa, and Rev1, of which Pols eta, iota, and kappa have been shown to physically interact with proliferating cell nuclear antigen (PCNA) and be functionally stimulated by it. However, in sharp contrast to the large increase in processivity that PCNA binding imparts to the replicative Pol, Poldelta, the processivity of Y family Pols is not enhanced upon PCNA binding. Instead, PCNA binding improves the efficiency of nucleotide incorporation via a reduction in the apparent K(m) for the nucleotide. Here we show that Poliota interacts with PCNA via only one of its conserved PCNA binding motifs, regardless of whether PCNA is bound to DNA or not. The mode of PCNA binding by Poliota is quite unlike that in Poldelta, where multisite interactions with PCNA provide for a very tight binding of the replicating Pol with PCNA. We discuss the implications of these observations for the accuracy of DNA synthesis during translesion synthesis and for the process of Pol exchange at the lesion site.  相似文献   

12.
Until recently, the molecular mechanisms of translesion DNA synthesis (TLS), a process whereby a damaged base is used as a template for continued replication, was poorly understood. This area of scientific research has, however, been revolutionized by the finding that proteins long implicated in TLS are, in fact, DNA polymerases. Members of this so-called UmuC/DinB/Rev1/Rad30 superfamily of polymerases have been identified in prokaryotes, eukaryotes and archaea. Biochemical studies with the highly purified polymerases reveal that some, but not all, can traverse blocking lesions in template DNA. All of them share a common feature, however, in that they exhibit low fidelity when replicating undamaged DNA. Of particular interest to us is the Rad30 subfamily of polymerases found exclusively in eukaryotes. Humans possess two Rad30 paralogs, Rad30A and Rad30B. The RAD30A gene encodes DNA polymerase eta and defects in the protein lead to the xeroderma pigmentosum variant (XP-V) phenotype in humans. Very recently RAD30B has also been shown to encode a novel DNA polymerase, designated as Pol iota. Based upon in vitro studies, it appears that Pol iota has the lowest fidelity of any eukaryotic polymerase studied to date and we speculate as to the possible cellular functions of such a remarkably error-prone DNA polymerase.  相似文献   

13.
Y-family DNA polymerases are believed to facilitate the replicative bypass of damaged DNA in a process commonly referred to as translesion synthesis. With the exception of DNA polymerase eta (poleta), which is defective in humans with the Xeroderma pigmentosum variant (XP-V) phenotype, little is known about the cellular function(s) of the remaining human Y-family DNA polymerases. We report here that an interaction between human DNA polymerase iota (poliota) and the proliferating cell nuclear antigen (PCNA) stimulates the processivity of poliota in a template-dependent manner in vitro. Mutations in one of the putative PCNA-binding motifs (PIP box) of poliota or the interdomain connector loop of PCNA diminish the binding between poliota and PCNA and concomitantly reduce PCNA-dependent stimulation of poliota activity. Furthermore, although retaining its capacity to interact with poleta in vivo, the poliota-PIP box mutant fails to accumulate in replication foci. Thus, PCNA, acting as both a scaffold and a modulator of the different activities involved in replication, appears to recruit and coordinate replicative and translesion DNA synthesis polymerases to ensure genome integrity.  相似文献   

14.
Replicative DNA polymerases are blocked by damage in the template DNA. To get past this damage, the cell employs specialised translesion synthesis (TLS) polymerases, which have reduced stringency and are able to bypass different lesions. For example, DNA polymerase ? (pol?) is able to carry out TLS past UV-induced cyclobutane pyrimidine dimers. How does the cell bring about the switch from replicative to TLS polymerase? We have shown that, in human cells, when the replication machinery is blocked at DNA damage, PCNA, the sliding clamp required for DNA replication, is mono-ubiquitinated and that this modified form of PCNA has increased affinity for pol?. This provides a mechanism for the polymerase switch. In this Extra-View, we discuss the possible signals that might trigger ubiquitination of PCNA, whether PCNA becomes de-ubiquitinated after TLS has been accomplished and the role of the hREV1 protein in TLS. We point out some apparent differences between mechanisms in Saccharomyces cerevisiae and human cells.  相似文献   

15.
Y-family DNA polymerases can replicate past a variety of damaged bases in vitro but, with the exception of DNA polymerase eta (poleta), which is defective in xeroderma pigmentosum variants, there is little information on the functions of these polymerases in vivo. Here, we show that DNA polymerase iota (poliota), like poleta, associates with the replication machinery and accumulates at stalled replication forks following DNA-damaging treatment. We show that poleta and poliota foci form with identical kinetics and spatial distributions, suggesting that localization of these two polymerases is tightly co-ordinated within the nucleus. Furthermore, localization of poliota in replication foci is largely dependent on the presence of poleta. Using several different approaches, we demonstrate that poleta and poliota interact with each other physically and that the C-terminal 224 amino acids of poliota are sufficient for both the interaction with poleta and accumulation in replication foci. Our results provide strong evidence that poleta targets poliota to the replication machinery, where it may play a general role in maintaining genome integrity as well as participating in translesion DNA synthesis.  相似文献   

16.
Y-family DNA polymerases can replicate past a variety of damaged bases in vitro but, with the exception of DNA polymerase eta (poleta), which is defective in xeroderma pigmentosum variants, there is little information on the functions of these polymerases in vivo. Here, we show that DNA polymerase iota (poliota), like poleta, associates with the replication machinery and accumulates at stalled replication forks following DNA-damaging treatment. We show that poleta and poliota foci form with identical kinetics and spatial distributions, suggesting that localization of these two polymerases is tightly co-ordinated within the nucleus. Furthermore, localization of poliota in replication foci is largely dependent on the presence of poleta. Using several different approaches, we demonstrate that poleta and poliota interact with each other physically and that the C-terminal 224 amino acids of poliota are sufficient for both the interaction with poleta and accumulation in replication foci. Our results provide strong evidence that poleta targets poliota to the replication machinery, where it may play a general role in maintaining genome integrity as well as participating in translesion DNA synthesis.  相似文献   

17.
Translesion DNA synthesis (TLS) of damaged DNA templates is catalyzed by specialized DNA polymerases. To probe the cellular TLS mechanism, a host-vector system consisting of mouse fibroblasts and a replicating plasmid bearing a single DNA adduct was developed. This system was used to explore the TLS mechanism of a heptanone-etheno-dC (H-epsilondC) adduct, an endogenous lesion produced by lipid peroxidation. In wild-type cells, H-epsilondC almost exclusively directed incorporation of dT and dA. Whereas knockout of the Y family TLS polymerase genes, Polh, Polk, or Poli, did not qualitatively affect these TLS events, inactivation of the Rev3 gene coding for a subunit of polymerase zeta or of the Rev1 gene abolished TLS associated with dA, but not dT, insertion. The analysis of results of the cellular studies and in vitro TLS studies using purified polymerases has revealed that the insertion of dA and dT was catalyzed by different polymerases in cells. While insertion of dT can be catalyzed by polymerase eta, kappa, and iota, insertion of dA is catalyzed by an unidentified polymerase that cannot catalyze extension from the resulting dA terminus. Therefore, the extension from this terminus requires the activity of polymerase zeta-REV1. These results provide new insight into how cells use different TLS pathways to overcome a synthesis block.  相似文献   

18.
Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.  相似文献   

19.
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS-induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS.  相似文献   

20.
The replicative bypass of base damage in DNA (translesion DNA synthesis [TLS]) is a ubiquitous mechanism for relieving arrested DNA replication. The process requires multiple polymerase switching events during which the high-fidelity DNA polymerase in the replication machinery arrested at the primer terminus is replaced by one or more polymerases that are specialized for TLS. When replicative bypass is fully completed, the primer terminus is once again occupied by high-fidelity polymerases in the replicative machinery. This review addresses recent advances in our understanding of DNA polymerase switching during TLS in bacteria such as E. coli and in lower and higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号