首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clone (LP001) expressing a new lipase gene was isolated from a metagenomic library of the Brazilian Atlantic Forest soil. The DNA insert of LP001 was fully sequenced, and 38 ORFs were identified. Comparison of ORFs, %G + C content and gene organization with sequenced bacterial genomes suggested that the fosmid DNA insert belongs to an organism of the Acidobacteria phylum. Protein domain analysis and inactivation by transposon insertion showed that the protein encoded by ORF29 was responsible for the lipase activity and was named LipAAc. The purified LipAAc lipase was capable of hydrolyzing a broad range of substrates, showing the highest activity against p-nitrophenol (pNP) decanoate. The lipase was active over a pH range of 5.0-10.0 and was insensitive to divalent cations. LipAAc is moderately thermostable with optimum temperature between 50 and 60 °C and was thermally activated (80% activity increase) after 1 h incubation at 50 °C. Phylogenetic analysis suggested that the LipAAc is a member of family I of bacterial lipases and clusters with other moderately thermostable lipases of this group. Comparisons of the DNA insert of fosmid LP001 with other acidobacterial genomes and sequence database suggest that lipAAc gene has a fungal origin and was acquired by horizontal transfer.  相似文献   

2.
In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34–71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C4) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.  相似文献   

3.
Zhao H  Zheng L  Wang X  Liu Y  Xu L  Yan Y 《Biotechnology letters》2011,33(12):2445-2452
Bioinformatic analysis of the Yarrowia lipolytica CLIB122 genome has revealed 18 putative lipase genes all of which were expressed in Escherichia coli and screened for hydrolyzing activities against p-nitrophenyl-palmitate. One positive transformant containing an ORF of 1,098 bp encoding a protein of 365 amino acids was obtained. To characterize its enzymatic properties, the lipase gene was functionally expressed in Pichia pastoris. The resulting lipase exhibited the highest activity towards p-NP-decanoate at pH 7 and 35°C. In addition, the new lipase had a lower optimal temperature and pH compared to other Y. lipolytica lipases. It was noticeably enhanced by Ca2+, but was inhibited by PMSF, Hg2+ and Ni2+. The new lipase displayed the 1,3-specificity for triolein.  相似文献   

4.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   

5.
Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, coldactive lipases have gained special attentions in various industrial fields such as washer detergent, pharmaceutical catalyst, and production of structured lipid. However, production of cold-active lipase is mostly found from psychrophilic microorganisms. Recently we found a novel cold-active lipase from Pichia lynferdii Y-7723 which is mesophilic yeast strain. In this study, we purified the cold active lipase and the enzyme was further characterized in several parameters. The enzyme was purified with 33 purification fold using chromatographic techniques and the purified lipase represented maximum lipolytic activity at 15°C and the maximum activity was highly dependent on pH.  相似文献   

6.
Two novel lipase genes (lipJ02, lipJ03) were isolated directly from environmental DNA via genome-walking method. Lipase gene lipJ02 contained an open reading frame (ORF) of 1,425 bp and encoded a 474-amino acids lipase protein, while lipase gene lipJ03 contained an ORF of 1,413 bp and encoded a 470-amino acids lipase protein. The lipase genes were cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host, Pichia pastoris KM71, and the recombinant P. pastoris were screened via a high-throughput method. The recombinants were induced by methanol to secrete active lipases into cultural medium. The recombinant lipases were also purified and characterized. The optimum temperature for the purified lipase LipJ02 and LipJ03 was 30 and 35°C, respectively, at pH 8.0. They exhibited similar thermostability, but LipJ02 exhibited better pH stability than LipJ03.  相似文献   

7.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

8.
Pseudomonas, being the common inhabitant of colder environments, are suitable for the production of cold-active enzymes. In the present study, a newly isolated strain of Pseudomonas from cold desert site in Indian Himalayan Region, was investigated for the production of cold-active lipase. The bacteria were identified as Pseudomonas proteolytica by 16S rDNA sequencing. Lipase production by bacteria was confirmed by qualitative assay using tributyrin and rhodamine-B agar plate method. The bacterium produced maximum lipase at 25 °C followed by production at 15 °C while utilizing olive, corn, as well as soybean oil as substrate in lipase production broth. Enzyme produced by bacteria was partially purified using ammonium sulphate fractionation. GBPI_Hb61 showed aggregation behaviour which was confirmed using several techniques including gel filtration chromatography, dynamic light scattering, and native PAGE. Molecular weight determined by SDS-PAGE followed by in-gel activity suggested two lipases of nearly similar molecular weight of ~50 kDa. The enzyme showed stability in wide range of pH from 5 to 11 and temperature up to 50 °C. The enzyme from GBPI_Hb61 exhibited maximum activity toward p-nitrophenyldecanoate (C10). The stability of enzyme was not affected with methanol while it retained more than 75% activity when incubated with ethanol, acetone, and hexane. The bacterium is likely to be a potential source for production of cold-active lipase with efficient applicability under multiple conditions.  相似文献   

9.
To access to the microbial genetic resources of deep-sea sediment by a culture-independent approach, the sediment DNA was extracted and cloned into fosmid vector (pCC1FOS) generating a library of 39,600 clones with inserts of 24–45 kb. The clone fss6 producing red-brown pigment was isolated and characterized. The pigment was identified as melanin according to its physico-chemical characteristics. Subcloning and sequences analyses of fss6 demonstrated that one open reading frame (ORF2) was responsible for the pigment production. The deduced protein from ORF2 revealed significant amino acid similarity to the 4-hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina loihiensis. Further study demonstrated that the production of melanin was correlated with homogentistic acid (HGA). The p-hydroxyphenylpyruvate produced by the Escherichia coli host was converted to HGA through the oxidation reaction of introduced HPPD. The results demonstrate that expression of DNA extracted directly from the environment might generate applicable microbial gene products. The construction and analysis of the metagenomic library from deep-sea sediment contributed to our understanding for the reservoir of unexploited deep-sea microorganisms.  相似文献   

10.
A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0–6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4–8°C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37°C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.  相似文献   

11.
Staphylococcus xylosus is a microorganism involved in fermentation of meat products and also a natural producer of extracellular lipases. The aim of the present work was to clone and express in E. coli a lipase from S. xylosus (AF208229). This lipase gene (1084 bp) was amplified from a S. xylosus strain isolated from naturally fermented salami and introduced in pET14b expression vector in order to express the recombinant fusion protein (histidine-tagged lipase) in E. coli. Recombinant histidine-tagged S. xylosus lipase was purified by affinity chromatography in an HPLC system. The histidine-tagged lipase is a monomer in solution, as determined by size-exclusion chromatography. It presents a high lipase activity at pH 9.0 and 42°C for p-nitrophenyl acetate and p-nitrophenyl butyrate, among seven different esters assayed (pNPC2, pNPC4, pNPC10, pNPC12, pNPC14, pNPC16, pNPC18). Moreover, the enzyme presented a quite interesting thermal stability, after an incubation period of 10 min at 95°C, 77% of the initial activity was retained.  相似文献   

12.
The sequence corresponding to the mature lipase of Rhizopus oryzae WPG (ROLw) was subcloned in the pPIC9K expression vector, with a strong AOX1 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. The His-tagged lipase was expressed in Pichia Pastoris X33 and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). High level expression of the lipase by Pichia Pastoris X33 cells harbouring the lipase gene containing expression vector was observed upon induction with 2.5 g/l methanol at 28°C; the specific activity of the purified His6-ROLw was 1,500 or 760 U/mg using olive oil emulsion or tributyrin as substrates, respectively. To check the importance of Asn 134 His substitution in the affinity and substrate selectivity of ROLw, the mutant His6-ROLw-N134H was overexpressed in Pichia Pastoris X33 and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged ROLw-N134H was 5,900 and 35 U/mg using olive oil emulsion or tributyrin as substrate. A comparative study of the wild type (His6-ROLw) and the mutant (His6-ROLw-N134H) proteins was carried out. A 3D structure model of ROLw was built using the RNL structure as template. We have concluded that a slight increase in the exposed hydrophilic residues on the surface of ROLw as compared to RNL (ROLwN134H) could be responsible for a higher selectivity of ROlw for long and short chain triacylglycerols at the lipid/water interface and then explaining the importance of Asn 134 for the chain length specificity of ROLw. This property is quite rare among Rhizopus lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

13.
Three novel lipase-producing microorganisms have been isolated from 526 actinomycete strains by employing screening techniques on solid media. Time-course and scale-up of enzyme production were analyzed. The lipases, produced by microorganisms belonging to the Streptomyces genus, were tested in several reactions in organic medium using unnatural substrates. The lyophilized crude lipases are stable at least for 1 month at 4°C (100% recovered activity). The lipase activity per milliliter of cell culture broth was higher than described in the literature for other lipases from actinomycetes. The three selected lipases displayed better activity than commercial lipase from Candida rugosa in the resolution of chiral secondary alcohols. The lipase from S. halstedii also displayed very good activity in the synthesis of carbamates.  相似文献   

14.
Functional screening for lipolytic enzymes at low temperatures resulted in the isolation of the novel cold-active esterases, EstM-N1 and EstM-N2, from a metagenomic DNA library of arctic soil samples. EstM-N1 and EstM-N2 were 395 and 407 amino acids in length, respectively, and showed the highest similarity to class C β-lactamases. However, they shared a relatively low level of sequence similarity (30%) with each other. Phylogenetic analysis of bacterial lipolytic enzymes confirmed that EstM-N1 and EstM-N2 belonged to family VIII of bacterial esterases/lipases. The (His)6-tagged esterases were purified to about 99% homogeneity from the soluble fraction of recombinant Escherichia coli cultures. The purified EstM-N1 and EstM-N2 retained more than 50% of maximal activity in the temperature range of 0–35°C, with optimal temperatures of 20°C and 30°C, respectively. Both enzymes preferred the short acyl chains of p-nitrophenyl esters and exhibited very narrow substrate specificity, indicating that they are typical esterases. The β-lactamase activity of EstM-N1 and EstM-N2 was also detected and reached about 31% and 13% of the positive control enzyme, Bacillus cereus β-lactamase, respectively. These first cold-active esterases belonging to family VIII are expected to be useful for potential biotechnological applications as interesting biocatalysts.  相似文献   

15.
Enzymes from fish and aquatic invertebrates have recently been characterized and their study has led to the emergence of some new applications of these classes of enzymes. However, very little is known about lipases from mollusks. A lipolytic activity was located in the marine snail digestive glands (hepatopancreas), from which a marine snail digestive lipase named mSDL was purified. Pure mSDL has a molecular mass of about 70 kDa as determined by SDS/PAGE analysis. Unlike the known digestive lipases while acting at 37 °C, the mSDL displayed its maximal activity on long and short-chain triacylglycerols at 50 °C. A specific activity of 400 U/mg and 100 U/mg was obtained with TC4 or olive oil as substrate respectively. Only 25% of the maximal activity was measured at 37 °C. Interestingly, neither colipase, nor bile salts were detected in the marine snail hepatopancreas, which suggests that colipase evolved in invertebrates simultaneously with the appearance of an exocrine pancreas and a true liver which produces bile salts. No similarity was found between the N-terminal amino acids sequence of the mSDL and those of the known digestive lipases. Altogether, these results suggest that the mSDL is a member of a new group of digestive lipases belonging to invertebrates.  相似文献   

16.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

17.
Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 °C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C10–C16), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.  相似文献   

18.
Two types of extracellular lipases (I and II) from Trichosporon fermentans WU-C12 were purified by acetone precipitation and successive chromatographies on Butyl-Toyopearl 650 M, Toyopearl HW-55F and Q-Sepharose FF. The molecular weight of lipase I was 53 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 160 kDa by gel filtration, while that of lipase II was 55 kDa by SDS-PAGE and 60 kDa by gel filtration. For the hydrolysis of olive oil, the optimum pH and temperature of both the lipases were 5.5 and 35°C, respectively. The lipases showed stable activities after incubation at 30°C for 24 h in a pH range from 4.0 to 8.0. The thermostability of lipase I for 30 min at a reaction pH of 5.5 was up to 40°C, while that of lipase II under the same conditions was up to 50°C. Both lipases could hydrolyze the 1-, 2-, and 3-positions of triolein, and cleave all three ester bonds, regardless of the position in the triglyceride.  相似文献   

19.

Objectives

To identify novel cold-active lipases from fungal sources and improve their production by heterologous expression in Pichia pastoris.

Results

A novel cold-active lipase gene (ReLipB) from Rhizomucor endophyticus was cloned. ReLipB was expressed at a high level in Pichia pastoris using high cell-density fermentation in a 5-l fermentor with the highest lipase activity of 1395 U/ml. The recombinant lipase (RelipB) was purified and biochemically characterized. ReLipB was most active at pH 7.5 and 25 °C. It was stable from pH 4.5–9.0. It exhibited broad substrate specificity towards p-nitrophenyl (pNP) esters (C2–C16) and triacylglycerols (C2–C12), showing the highest specific activities towards pNP laurate (231 U/mg) and tricaprylin (1840 U/mg), respectively. In addition, the enzyme displayed excellent stability with high concentrations of organic solvents including cyclohexane, n-hexane, n-heptane, isooctane and petroleum ester and surfactants.

Conclusions

A novel cold-active lipase from Rhizomucor endophyticus was identified, expressed at a high level and biochemically characterized. The high yield and unique enzymatic properties make this lipase of some potential for industrial applications.
  相似文献   

20.
—The cultivation conditions of wild-type strain V-10 and mutant strain M-l (overproducer of endonuclease and chitinase) ofSerratia marcescens optimal for extracellular lipase biosynthesis were determined. The strain V-10 displayed the maximum lipase yield (840 AU/ml) after 10–12 h of cultivation; the strain M-l (330 AU/ml), after 25–30 h. The data showed that extracellular lipases from V-10 and M-1 can be precipitated in a weakly acidic medium (pH 5.0 and 4.5, respectively). This property was used to obtain partially purified lipase preparations. The effect of the ionic composition of the reaction mixture on the activities of these enzymatic preparations was studied. Both preparations displayed the highest activities in weakly alkaline media (pH 8.0); however, the wild-type strain lipase displayed higher thermal stability and stability at alkaline pH compared with M-1 lipase. Both lipases were activated by various anionic and nonionic surfactants and were inactive in the presence of cetyltrimethylammonium bromide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号