首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vgamma9Vdelta2(+) cells represent the major population of gammadelta T cells in primate blood and react in an MHC-unrestricted fashion to a set of low m.w. nonpeptide phosphoantigens. Two types of structurally related agonists have been discovered so far: the natural phosphoantigens (hydroxydimethyl allyl-pyrophosphate or isopentenyl-pyrophosphate (IPP)) acting directly on Vgamma9Vdelta2(+) TCR and aminobisphosphonates, which block the mevalonate pathway in target cells, leading to accumulation of natural phosphoantigens that in turn activate Vgamma9Vdelta2(+) cells. We demonstrate in the cynomolgus monkey that Vgamma9Vdelta2 can be manipulated in vivo with bromohydrin pyrophosphate (BrHPP)/Phosphostim, a potent synthetic agonist for which the mechanism of action is similar to natural phosphoantigens. Although of very short half-life, injection of BrHPP leads to strong activation of Vgamma9Vdelta2, inducing production of a high level of Th1 cytokines. Combination of BrHPP with low-dose rhIL-2 induces specific amplification of effector-memory peripheral Vgamma9Vdelta2 in blood in a dose-dependant manner. This transient response returns to baseline within 10-15 days. Successive infusions of BrHPP and rhIL-2 induce less vigorous expansions, suggesting a progressive exhaustion of the response. As no toxicity is detected with or without IL-2, this scheme represents a promising immunotherapeutic strategy for induction of systemic Th1 cytokines and massive expansion of gammadelta T cell subset with antitumor and anti-infectious properties.  相似文献   

2.
Human Vgamma9delta2 T lymphocytes are suggested to play an important role in the immune response to various microbial pathogens. In contrast to alphabeta T cells, gammadelta T lymphocytes recognize small, non-protein, phosphate-bearing antigens (phosphoantigens) in a major histocompatibility complex-independent manner. Four different phosphoantigens termed TUBag1 to TUBag4 with a common 3-formyl-1-butyl-pyrophosphate moiety and isopentenyl-pyrophosphate have been isolated and identified from mycobacteria. However, natural occurring gammadelta T cell ligands from other bacterial species were not characterized so far. Here, we describe the structural identification of the two compounds responsible for the gammadelta T cell-stimulating capacity of Escherichia coli as similar to the mycobacterial phosphoantigens 3-formyl-1-butyl-pyrophosphate and its M(r) 275 homologue TUBag2. In addition, E. coli phosphoantigens exert bioactivities on gammadelta T cells with similar potencies to the mycobacterial phosphoantigens at 5-15 nm concentration. Furthermore, our results clearly prove that the deoxyxylulose 5-phophate pathway (also referred to as Rohmer metabolic route of isoprenoid biosynthesis) is essential for the biosynthesis of the phosphoantigens in E. coli. Because this pathway is absent from human cells, it proves an ideal target for focusing efficiently the antimicrobial selectivity of human gammadelta T lymphocytes.  相似文献   

3.
Most human blood gammadelta T cells react without major histocompatibility complex restriction to small phosphorylated nonpeptide antigens (phosphoantigens) that are abundantly produced by mycobacteria and several other microbial pathogens. Although isopentenyl pyrophosphate has been identified as a mycobacterial antigen for gammadelta T cells, the structure of several other stimulating compounds with bioactivities around 1000-fold higher than isopentenyl pyrophosphate remains to be elucidated. This paper describes the structural identification of 3-formyl-1-butyl-pyrophosphate as the core of several non-prenyl mycobacterial phosphoantigens bioactive at the nM range. Recognition of this molecule by gammadelta T cells is very selective and relies on its aldehyde and pyrophosphate groups. This novel pyrophosphorylated aldehyde most probably corresponds to a metabolic intermediate of the non-mevalonate pathway of prenyl phosphate biosynthesis in eubacteria and algae. The reactivity to 3-formyl-1-butyl-pyrophosphate supports the view that human gammadelta T cells are physiologically devoted to antimicrobial surveillance.  相似文献   

4.
BACKGROUND: We analyzed the gammadelta T cell composition and responses in the peripheral blood and cerebrospinal fluid (CSF) of children affected by tuberculous meningitis (TBM) and in control children. MATERIALS AND METHODS: Peripheral blood and CSF samples were stimulated with different phosphoantigens and IL-2, and expansion of Vgamma9/Vdelta2 T cells assessed by FACS analysis. Vgamma9/Vdelta2 lines were obtained by culturing CSF or peripheral blood mononuclear cells (PBMC) in vitro with phosphoantigens and IL-2 for 2 months, and tested for proliferation and cytokine production in response to phosphoantigens. Vdelta2(D)Jdelta junctional sequence length was assessed by PCR. RESULTS: The repertoire of gammadelta T cells from the CSF of TBM patients was characterized by the predominance of Vgamma9/Vdelta2 T lymphocytes, which accounted for >80% of gammadelta T cells. Vgamma9/Vdelta2 cells from the CSF of TBM children responded to different synthetic and natural (mycobacterial) phosphoantigens and produced discrete amounts of IFN-gamma and TNF-alpha. The in vitro expansion of Vgamma9/Vdelta2 T cells from CSF and peripheral blood of TBM patients prominently decreased following chemotherapy, and similarly, the proportion of ex vivo unstimulated Vgamma9/Vdelta2 T cells in CSF of TBM patients decreased to levels detected in the CSF of control subjects. Vdelta2 CDR3 TCR analysis showed that the remaining Vdelta2 cells in the CSF of TBM patients were still polyclonal. CONCLUSIONS: These findings are consistent with an involvement of Vgamma9/Vdelta2 T cells in TBM. http://link. springer-ny.com/link/service/journals/00020/bibs/5n5p301. html  相似文献   

5.
Vgamma9Vdelta2 cells, a major peripheral blood gammadelta T cell subset in adults, recognize non-peptidic phosphorylated metabolites referred to as phosphoantigens (phosphoAg), which are produced by a broad array of prokaryotic and eukaryotic organisms. We will review here the biosynthetic pathways leading to production of phosphoAg and our current understanding of the mode of activation of Vgamma9Vdelta2 cells by these compounds. We will also discuss the physiological relevance of this immune recognition process and show how it can enable discrimination by Vgamma9Vdelta2 lymphocytes of infected and/or transformed cells.  相似文献   

6.
BACKGROUND: The recognition of phosphorylated nonpeptidic microbial metabolites by Vgamma9Vdelta2 T cells does not appear to require the presence of MHC molecules or antigen processing, permitting rapid responses against microbial pathogens. These may constitute an important area of natural anti-infectious immunity. To provide evidence of their involvement in immune reactivities against mycobacteria, we measured the responsiveness of peripheral blood Vgamma9Vdelta2 T cells in children with primary Mycobacterium tuberculosis (MTB) infections. MATERIALS AND METHODS: Peripheral blood mononuclear cells from 22 children with MTB infections and 16 positivity of tuberculin (PPD)-negative healthy children were exposed to nonpeptidic antigens in vitro and the reactivity of the Vgamma9Vdelta2 T cell subset with these antigens was determined using proliferation and cytokine assays. Also, responses of gammadelta T cells from rhesus monkeys stimulated with phosphoantigens in vivo were measured. RESULTS: The Vgamma9Vdelta2 T cell responses were highly increased in infected children in comparison with age-matched controls. This augmented Vgamma9Vdelta2 T cell reactivity subsided after successful antibiotic chemotherapy, suggesting that persistent exposure to mycobacterial antigens is required for the maintenance of gammadelta T cell activation in vivo. The in vivo reactivity of Vgamma9Vdelta2 T cells to phosphoantigens was also analyzed in a rhesus monkey model system. Intravenous injections of phosphoantigens induced an activated state of simian Vgamma9Vdelta2 T cells which decreased after 2 months, i.e., with a time course similar to that seen in MTB-infected children. CONCLUSIONS: The increased reactivity of Vgamma9Vdelta2 T cells to phosphoantigens appears to be dependent on constant antigenic exposure. Consequently, the assessment of Vgamma9Vdelta2 responses may be useful for monitoring the efficacy of antimycobacterial therapies.  相似文献   

7.
The major subset of human blood gammadelta T lymphocytes expresses the variable-region genes Vgamma9 and Vdelta2. These cells recognize non-peptidic phosphoantigens that are present in some microbial extracts, as well as the beta(2)-microglobulin-deficient Burkitt's lymphoma Daudi. Most cytotoxic human Vgamma9/Vdelta2 T cells express inhibitory natural killer cell receptors for HLA class I that downmodulate the responses of the gammadelta T lymphocytes against HLA class I expressing cells. In this study we show that transfection of the human beta(2)-microglobulin cDNA into Daudi cells markedly inhibits the cytotoxic and proliferative responses of human Vgamma9/Vdelta2 T cells. This provides direct evidence that the "innate" specificity of human Vgamma9/Vdelta2 T-lymphocytes for Daudi cells is uncovered by the loss of beta(2)m by Daudi. However, Daudi cells that express HLA class I in association with mouse beta(2)m at the cell surface are recognized by human Vgamma9/Vdelta2 T cells close to the same degree as the parental HLA class I deficient Daudi cell line. Thus, proper conformation of the HLA class I molecules is required for binding to natural killer cell receptors. Cloning of the HLA class I A, B, and C molecules of Daudi cells and transfer of the individual HLA class I molecules of Daudi cells into the HLA class I deficient recipient cell lines.221 and C1R demonstrate that for some human gammadelta T-cell clones cytolysis can be entirely inhibited by single HLA class I alleles while for other clones single HLA class I alleles only partially inhibit cytotoxicity. Thus, most human Vgamma9/Vdelta2 T cells represent a population of killer cells that evolved like NK cells to destroy target cells that have lost expression of individual HLA class I molecules but with a specificity that is determined by the Vgamma9/Vdelta2 TCR.  相似文献   

8.
Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.  相似文献   

9.
Human Vgamma9Vdelta2 gammadelta T cells are selectively activated by bacterial phosphoantigens and aminobisphosphonates and exert potent cytotoxicity toward various tumor cells. In this study we have characterized the cytotoxic reactivity of gammadelta T cell lines established from healthy donors by stimulation with aminobisphosphonate alendronate toward melanoma MeWo and pancreatic adenocarcinomas Colo357 and PancTu1 lines in vitro and in vivo upon adoptive transfer into SCID mice. Lysis of all tumor cells was enhanced when gammadelta effector cells were preactivated with phosphoantigens. Recognition of MeWo was TCR dependent, as shown by anti-TCR Ab blockade, whereas only the phosphoantigen-mediated increased, but not the basal, lysis of Colo357 and PancTu1 was inhibited by anti-TCR Ab. Furthermore, lysis of Colo357, but not that of MeWo or PancTu1, was completely inhibited by the pan-caspase inhibitor zVAD, indicating different recognition and effector mechanisms involved in the gammadelta T cell/tumor cell interactions. Upon transfer into SCID mice, alendronate-activated gammadelta T cells given together with IL-2 and alendronate significantly prolonged the survival of SCID mice inoculated with human tumor cells. The best results were thus obtained when gammadelta T cells were repetitively given five times over a period of 30 days. With this protocol, human gammadelta T cells prolonged the mean survival of mice inoculated with MeWo melanoma from 28.5 to 87.3 days (p < 0.0001) and in the case of PancTu1 adenocarcinoma from 23.0 to 48.4 days (p < 0.0001). We conclude that an effective gammadelta T cell-based immunotherapy might require activation of endogenous gammadelta T cells with aminobisphosphonate (or phosphoantigen) and IL-2, followed by adoptive transfer of in vitro expanded gammadelta T cells.  相似文献   

10.
11.
Gammadelta T lymphocytes recognize nonpeptidic microbial antigens without MHC restriction and display both lytic and proliferative responses to human immunodeficiency virus (HIV)-infected cells. This innate recognition involves both T Cell Receptor (TCR) and NK-receptor mediated signalling through non-peptidic metabolites and HLA class I down-regulation. We observed that HLA-masking and nonpeptidic phosphoantigens induce the expression of CD25 and CD69 activation markers on the surface of gammadelta T cells. Interestingly, CD94+ cell depletion by magnetic beads showed that the expression of this antigen is essential for Vdelta2 T cell activation by HLA-masking. Moreover, both phosphoantigen-stimulation and in vitro HIV infection resulted in marked Vgamma9Vdelta2 T cell expansion, whereas HLA-masking was unable to induce proliferative responses. Finally, we observed a relevant hyporesponsiveness to non-peptidic antigens in HIV-infected persons and in cord blood cells from healthy donors when compared to adult PBMC from uninfected donors. Altogether, the reduced ability to naturally recognize the infected cells may contribute to HIV-disease progression and may facilitate maternal transmission of HIV infections.  相似文献   

12.
Tuberculosis and malaria remain the leading causes of mortality among human infectious diseases in the world. It is estimated that 3 to 5 million people die from tuberculosis and malaria each year. Although it is traditionally believed that CD4 and CD8 alphabeta T lymphocytes are mandatory for protective immune responses against Mycobacterium tuberculosis and Plasmodium falciparum (the ethiologic agents of tuberculosis and the most severe form of malaria, respectively), there is still incomplete understanding of the mechanisms of immune protection and of the causes of its failure in the affected patients. Several studies in humans and animal models have suggested that Vgamma9/Vdelta2 T cells may play an important role in the immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. Vgamma9/Vdelta2 T cells represent about 75% of all circulating gammadelta T cells while they can be greatly expanded during the acute phase of Mycobacterium tuberculosis and Plasmodium falciparum malaria. Vgamma9/Vdelta2 T recognize a new class of antigenic molecules which are nonpeptidic in nature and contain critical phosphate moieties (phosphoantigens). Interestingly, phosphoantigens isolated from Mycobacterium tuberculosis and Plasmodium falciparum share strong structural homology and are probably identical. However, despite a large body of data reported in the literature, it is not yet clear whether Vgamma9/Vdelta2 T cells play a protective or pathogenic role in immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. In this review we summarize our current knowledge of the biology of Vgamma9/Vdelta2 T cells in response to the two pathogens, Mycobacterium tuberculosis and Plasmodium falciparum, and provide evidence suggesting definition of a novel and important protective role through which Vgamma9/Vdelta2 T cells can contribute to the killing of microorganisms residing in intracellular compartments.  相似文献   

13.
Activation of V gamma 9V delta 2 T cells by NKG2D   总被引:5,自引:0,他引:5  
Human Vgamma9 Vdelta2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of gammadelta and CD8 T cells. This study provides evidence that Vgamma9 Vdelta2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vgamma9 Vdelta2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-alpha but not of IFN-gamma, as well as the release of cytolytic granules by Vgamma9 Vdelta2 T cells. Purified Vgamma9 Vdelta2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vgamma9 Vdelta2 T cells. These remarkable similarities in NKG2D function in NK and Vgamma9 Vdelta2 T cells may open new perspectives for Vgamma9 Vdelta2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.  相似文献   

14.
Bovine leukemia virus (BLV) is a complex B-lymphotrophic retrovirus of cattle and the causative agent of enzootic bovine leukosis. Serum antibody in infected animals does not correlate with protection from disease, yet only some animals develop severe disease. While a cytotoxic T-lymphocyte response may be responsible for directing BLV pathogenesis, this possibility has been left largely unexplored, in part since the lack of readily established cytotoxic target cells in cattle has hampered such studies. Using long-term naturally infected alymphocytic (AL) cattle, we have established the existence of cytotoxic T-lymphocyte response against BLV envelope proteins (Env; gp51/gp30). In vitro-expanded peripheral blood mononuclear (PBM) cell effector populations consisted mainly of gammadelta(+) (>40%), CD4(+) (>35%), and CD8(+) (>10%) T lymphocytes. Specific lysis of autologous fibroblasts infected with recombinant vaccinia virus (rVV) delivering the BLV env gene ranged from 30 to 65%. Depletion studies indicated that gammadelta(+) and not CD8(+) T cells were responsible for the cytotoxicity against autologous rVVenv-expressing fibroblasts. Additionally, cultured effector cells lysed rVVenv-expressing autologous fibroblasts and rVVenv-expressing xenogeneic targets similarly, suggesting a lack of genetic restricted killing. Restimulation of effector populations increased the proportion of gammadelta(+) T cells and concomitantly Env-specific cytolysis. Interestingly, culture of cells from BLV-negative or persistently lymphocytic cattle failed to elicit such cytotoxic responses or increase in gammadelta(+) T-cell numbers. These results imply that cytotoxic gammadelta(+) T lymphocytes from only AL cattle recognize BLV Env without a requirement for classical major histocompatibility complex interactions. It is known that gammadelta(+) T lymphocytes are diverse and numerous in cattle, and here we show that they may serve a surveillance role during natural BLV infection.  相似文献   

15.
16.
Although their precise roles are not well defined, gammadelta T lymphocytes are recognized as regular components of immune responses. These cells express a limited T cell receptor repertoire and they can be stimulated by soluble ligands without conventional processing and presentation by major histocompatibility antigens. Progress in this area has been limited by the substantial differences between murine and human gammadelta T cells and the lack of knowledge about these cells in nonhuman primates. We used molecular analysis of T cell receptor diversity to characterize gammadelta T cell populations from peripheral blood and colon of rhesus macaques (Macaca mulatta). The gammadelta T cell receptor diversity was limited and distinct for these tissue compartments, particularly in the TCRGV2 family. Furthermore, the TCRDV1 + subset of peripheral blood gammadelta T cells showed signs of progressive oligoclonalization as a function of age. Similar observations have been reported for human tissue samples and our results validate rhesus macaques as an appropriate animal model for studying primate gammadelta T cell populations.  相似文献   

17.
Normal (noninflamed) human skin contains a network of lymphocytes, but little is known about the homing and function of these cells. The majority of alphabeta T cells in normal skin express CCR8 and produce proinflammatory cytokines. In this study we examined other subsets of cutaneous lymphocytes, focusing on those with potential function in purging healthy tissue of transformed and stressed cells. Human dermal cell suspensions contained significant populations of Vdelta1(+) gammadelta T cells and CD56(+)CD16(-) NK cells, but lacked the subsets of Vdelta2(+) gammadelta T cells and CD56(+)CD16(+) NK cells, which predominate in peripheral blood. The skin-homing receptors CCR8 and CLA were expressed by a large fraction of both cell types, whereas chemokine receptors associated with lymphocyte migration to inflamed skin were absent. Neither cell type expressed CCR7, although gammadelta T cells up-regulated this lymph node-homing receptor upon TCR triggering. Stimulation of cutaneous Vdelta1(+) gammadelta T cell lines induced secretion of large amounts of TNF-alpha, IFN-gamma, and the CCR8 ligand CCL1. In contrast to cutaneous alphabeta T cells, both cell types had the capacity to produce intracellular perforin and displayed strong cytotoxic activity against melanoma cells. We therefore propose that gammadelta T cells and NK cells are regular constituents of normal human skin with potential function in the clearance of tumor and otherwise stressed tissue cells.  相似文献   

18.
Natural T (NT) lymphocytes recognize infected cells or microbial compounds without the classical genetic restriction of polymorphic major histocompatibility complex (MHC) molecules. This innate recognition pathway results in a broad and rapid antimicrobial response that may be critical for controlling the spread of intracellular pathogens, requiring the elimination of the infecting agent from both extracellular spaces and host cells. NT cells are mainly composed of alphabeta and gammadelta T lymphocytes that express natural killer (NK) receptors and recognize preferentially various nonpeptidic antigens. Similar to NK cells, NT lymphocytes can 'see' and kill target cells deficient in the expression of one or more MHC class I molecules. NT cells expressing the alphabeta TCR can recognize lipid and lipoglycan antigens presented in the context of nonpolymorphic CD1 molecules, whereas phosphocarbohydrates and akilamines induce constitutive responses in most Vgamma9Vdelta2 NT lymphocytes. The remaining fraction of gammadelta NT cells express the Vdelta1 chain associated with different Vgamma-chains and may directly recognize self-antigens such as MICA, MICB or CD1 molecules. It is possible that NT lymphocytes may play two opposite roles during intracellular infections. First, in the acute phase, they may be critical for the initiation of pathogen elimination. Second, in the chronic phase, NT cells may be dangerous, if their potential autoreactivity is not well controlled. It is conceivable that novel strategies of immune intervention against emerging and re-emerging intracellular pathogens, such as human immundeficiency virus (HIV), hepatitis-C virus (HCV) and Mycobacterium tuberculosis (MTB) may involve the control of NT cell activation/anergy by (nonpeptidic) immunoregulatory drugs.  相似文献   

19.
Studies have indicated that gammadelta T lymphocytes play an important role in the regulation of immune function and the clearance of intracellular pathogens. We have recently reported that intraepithelial lymphocytes (IEL), which are rich in gammadelta T cells, within the small intestine illustrated a significant increase in apoptosis and immune dysfunction in mice subjected to sepsis. However, the contribution of gammadelta T cells to the host response to polymicrobial sepsis remains unclear. In this study, we initially observed that after sepsis induced by cecal ligation and puncture (CLP), there was an increase in small intestinal IEL CD8+gammadelta+ T cells in control gammadelta+/+ mice. Importantly, we subsequently found an increased early mortality in mice lacking gammadelta T cells (gammadelta-/- mice) after sepsis. This was associated with decreases in plasma TNF-alpha, IL-6, and IL-12 levels in gammadelta-/- mice compared with gammadelta+/+ mice after sepsis. In addition, even though in vitro LPS-stimulated peritoneal macrophages showed a reduction in IL-6 and IL-12 release after CLP, these cytokines were less suppressed in macrophages isolated from gammadelta-/- mice. Alternatively, IL-10 release was not different between septic gammadelta+/+ and gammadelta-/- mice. Whereas T helper (Th)1 cytokine release by anti-CD3-stimulated splenocytes was significantly depressed in septic gammadelta+/+ mice, there was no such depression in gammadelta-/- mice. However, gammadelta T cell deficiency had no effect on Th2 cytokine release. These findings suggest that gammadelta T cells may play a critical role in regulating the host immune response and survival to sepsis, in part by alteration of the level of IEL CD8+gammadelta+ T cells and through the development of the Th1 response.  相似文献   

20.
PURPOSE: gamma9delta2 T lymphocytes have been shown to be directly cytotoxic against renal carcinoma cells. Lymphocytes T gammadelta can be selectively expanded in vivo with BrHPP (IPH1101, Phosphostim) and interleukin 2 (IL-2). A phase I Study was conducted in patients with metastatic renal cell carcinoma (mRCC) to determine the maximum-tolerated dose and safety of Innacell gammadeltatrade mark, an autologous cell-therapy product based on gamma9delta2 T lymphocytes, in patients with mRCC. EXPERIMENTAL DESIGN: A 1-h intravenous infusion of gamma9delta2 T lymphocytes was administered alone during treatment cycle 1 and combined with a low dose of subcutaneous interleukin-2 (IL-2, 2 MIU/m(2) from Day 1 to Day 7) in the two subsequent cycles (at 3-week intervals). The dose of gamma9delta2 T lymphocytes was escalated from 1 up to 8 x 10(9) cells. RESULTS: Ten patients underwent a total of 27 treatment cycles. Immunomonitoring data demonstrate that gamma9delta2 T lymphocytes are initially cleared from the blood to reappear at the end of IL-2 administration. Dose-limiting toxicity occurred in one patient at the dose of 8 x 10(9) cells (disseminated intravascular coagulation). Other treatment-related adverse events (AEs) included mainly gastrointestinal disorders and flu-like symptoms (fatigue, pyrexia, rigors). Hypotension and tachycardia also occurred, especially with co-administered IL-2. Six patients showed stabilized disease. Time to progression was 25.7 weeks. CONCLUSION: The data collected in ten patients with mRCC indicate that repeated infusions of Innacell gammadeltatrade mark at different dose levels (up to 8 x 10(9) total cells), either alone or with IL-2 is well tolerated. These results are in favor of the therapeutic value of cell therapy with Innacell gammadeltatrade mark for the treatment of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号