首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. E. White 《Plant and Soil》1977,46(1):195-208
Summary The effect of Al and P on the growth of lucerne (Medicago sativa) was studied in nutrient solutions in which aluminium phosphate did not precipitate. Al and P retained in the free space of the roots was washed out with 0.1N HCl/O4 at 5°C. The inhibitory effect of Al on growth was much less at pH 5 than at pH 4.5, although 3 to 4 times as much Al was found in the roots and shoots of the pH 5 plants.It is suggested that the low toxicity of high contents of Al was due to a portion of the uptake at pH 5 being in the form of polymeric aluminophosphate complexes of low net charge density. The optimum pH for the formation and polymerization of such complexes is around 5, and their composition depends on the P/Al mole ratio of the initial solutions. Washing32P-labelled roots in unlabelled P solutions containing Ca showed that 12–43 per cent more of the total label diffused out of the Al-treated roots at pH 5 than from control roots. This was consistent with estimates by solution analysis of 16–36 per cent (depending on the P/Al mole ratio) of the P present in the original uptake solutions being complexed with Al.  相似文献   

2.
Gravity-imposed growth orientation was studied in the roots of three-day-old maize seedlings treated for 3 h with 10–5to 10–2-M lead and cadmium nitrate solutions. Cubic agar blocks (1 mm3) containing lead and cadmium nitrate solutions were used to produce unilateral local chemostimulation of roots. Gravistimulation was induced when roots were in the horizontal position or slightly deviated from the initial vertical position at the beginning of chemotropic curvature response. Positive (towards the salt) and negative (away from the salt) chemotropic curvatures were observed most often when meristems of the initially vertical roots were chemostimulated. Negative curvatures were observed most often in response to medium salt concentrations, whereas high concentrations resulted in positive curvatures. Half of the roots with their meristems stimulated by salt solutions still continued growing vertically downward. Most roots exposed to simultaneous gravi- and chemostimulation and exposed to gravistimulation after salt treatment (except at the highest salt concentration) curved downward. It follows that the final growth orientation of these roots depended mostly on gravity. The author concludes that the primary roots of maize seedlings possess high gravitropic and low chemotropic sensitivity.  相似文献   

3.
We describe a method for perfusing the xylem in the stele of excised onion roots with solutions of known composition under a pressure gradient. Tracer studies using [14C] polyethylene glycol 4000 and the fluorescent dye, Tinopal CBSX, indicated that perfusing solutions passed exclusively through the xylem vessels. The conductance of the xylem was small over the apical 100 mm of the root axis but increased markedly between 100 and 200 mm. Unbuffered perfusion solutions supplied in the range pH 3.7–7.8 emerged after passage through the xylem adjusted to pH 5.2–6.0, indicating the presence of mechanisms for absorbing or releasing protons. This adjustment continued over many hours with net proton fluxes apparently determined by the disparity between the pH of the perfusion solution and the usual xylem sap pH of about 5.5. Mild acidification of the xylem sap by buffered perfusion solutions increased the release of 86Rb (K+) and 35SO4 2- from the stelar tissue into the xylem stream. The ion-transporting properties of onion roots seemed little changed by excision from the bulbs, or by removal of the apical zones of the root axis. The pH of sap produced by root pressure resembles that found in the outflow solutions of perfused root segments.  相似文献   

4.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

5.
We report here on an investigation of net nitrate and proton fluxes in root cells of maize (Zea mays L.) seedlings grown without (noninduced) and with (induced) 0.1 millimolar nitrate. A microelectrode system described previously (IA Newman, LV Kochian, MA Grusak, WJ Lucas [1987] Plant Physiol 84: 1177-1184) was utilized to quantify net ionic fluxes from the measurement of electrochemical potential gradients for NO3 and H+ within the unstirred layer at the root surface. The nitrate-inducibility, pH dependence, and concentration dependence of net NO3 uptake correlated quite closely with the electrical response of maize roots to nitrate under the same experimental conditions (as described in PR McClure, LV Kochian, RM Spanswick, JE Shaff [1990] Plant Physiol 93: 281-289). Additionally, it was found that potential inhibitors of the plasmalemma H+-ATPase (vandate, diethylstilbestrol), which were shown to abolish the electrical response to NO3 (in PR McClure, LV Kochian, RM Spanswick, JE Shaff [1990] Plant Physiol 93: 281-289), dramatically inhibited NO3 absorption. These results strongly indicate that the NO3 electrical response is due to the operation of a NO3 transport system in the plasmalemma of maize root cells. Furthermore, the results from the H+-ATPase inhibitor studies indicate that the NO3 transport system is linked to the H+-ATPase, presumably as a NO3/H+ symport. This is further supported by the pH response of the NO3 transport system (inhibition at alkaline pH values) and the change in net H+ flux from a moderate efflux in the absence of NO3, to zero net H+ flux after exposing the maize root to exogenous nitrate. Although these results can be explained by other interpretations, the simplest model that fits both the electrical responses and the NO3/H+ flux data is a NO3/H+ symport with a NO3:H+ flux stoichiometry >1, whose operation results in the stimulation of the H+-ATPase due to the influx of protons through the cotransport system.  相似文献   

6.
The aim of the present review is to define the various origins of root-mediated changes of pH in the rhizosphere, i.e., the volume of soil around roots that is influenced by root activities. Root-mediated pH changes are of major relevance in an ecological perspective as soil pH is a critical parameter that influences the bioavailability of many nutrients and toxic elements and the physiology of the roots and rhizosphere microorganisms. A major process that contributes root-induced pH changes in the rhizosphere is the release of charges carried by H+ or OH to compensate for an unbalanced cation–anion uptake at the soil–root interface. In addition to the ions taken up by the plant, all the ions crossing the plasma membrane of root cells (e.g., organic anions exuded by plant roots) should be taken into account, since they all need to be balanced by an exchange of charges, i.e., by a release of either H+ or OH. Although poorly documented, root exudation and respiration can contribute some proportion of rhizosphere pH decrease as a result of a build-up of the CO2 concentration. This will form carbonic acid in the rhizosphere that may dissociate in neutral to alkaline soils, and result in some pH decrease. Ultimately, plant roots and associated microorganisms can also alter rhizosphere pH via redox-coupled reactions. These various processes involved in root-mediated pH changes in the rhizosphere also depend on environmental constraints, especially nutritional constraints to which plants can respond. This is briefly addressed, with a special emphasis on the response of plant roots to deficiencies of P and Fe and to Al toxicity. Finally, soil pH itself and pH buffering capacity also have a dramatic influence on root-mediated pH changes.  相似文献   

7.
Methane oxidation associated with submersed vascular plants andits effects on diffusive CH4 release from plants wereexamined through a series of laboratory and field incubationexperiments. In laboratory analyses, measured rates of epiphyticoxidation (i.e., oxidation associated with aboveground tissues) rangedfrom 0.3 to 32.9 pmol mm–2 plant tissueh–1 with significant CH4 consumptionassociated with basal (i.e., near sediment) leaves and stems for all sixspecies tested. Basal stem tissue also showed greater oxidation activitythan basal leaves. Oxidation activity for washed roots of threesubmersed species ranged from 0.18 to 7.01 µmolg–1 root ash-free dry mass h–1 withhigher rates associated with two rhizomatous/stoloniferous speciesthan with a non-rhizomatous one. In field incubations of a singlespecies (Myriophyllum exalbescens), intact plants showed netCH4 consumption during the day and net release at night. Whena specific inhibitor of CH4 oxidation was applied (methylfluoride – MF), net daytime release from plants was observed andnighttime flux increased, indicating that diffusive CH4release from submersed plants is significantly curtailed by the activityof epiphytic methanotrophs.  相似文献   

8.
Two samples of red soil, one from Gushikawa Recreation Center (GRC) and one from Okinawa Royal Golf Club (ORGC), were examined for particle size distribution, textures, minerals, and chemical compositions. The effects of particle size and grinding of clay minerals on pH, electrical conductivity (EC), and dissolved chemical species were studied in deionized water and river water. The results of red soil solutions were compared with those of acidic waters found in red soil dominated areas. The minimum pH values of soil solutions extracted by deionized water were 4.38–5.36 and 5.16–5.89 and the maximum values of EC were 4.91–16.98mSm–1 and 3.54–11.23mSm–1 for GRC and ORGC, respectively. In the river water samples equilibrated with red soils, the minimum pH values were 4.48–5.10 and 4.77–5.91 and the maximum EC values were 19.6–34.2mSm–1 and 17.5–25.0mSm–1 for GRC and ORGC, respectively. The values of pH and EC varied with the soil–solution ratio and the particle size. The chemical composition of river water without mixing with red soil shows Na+K+ and Ca2+Mg2+. After mixing with red soil, the trend of the concentrations changed to Na+K+ and Mg2+Ca2+, which is the same as that of soil solutions in deionized water as well as that of acidic waters found in the red soil area. The pH of the acidic waters was 4.95–5.81 and EC was 7.76–30.0mSm–1. Laboratory experimental results agreed well with those found in the field in terms of trend of concentrations of the chemical species and pH. Therefore, the results of this study suggest that the low pH and trend of the concentrations of chemical species of the acidic waters found in the red soil dominated areas were the result of the interaction of natural water and red soil.  相似文献   

9.
Summary Simultaneous measurements of transepithelial potential difference (PD) and net water flux were made in the stripped intestine of seawater eels, and the effects of ouabain on these two parameters were examined in normal Ringer solution or under a chloride concentration gradient. Ouabain reduced the serosa-negative PD and the net water flux in normal Ringer solution with a linear relationship between the PD and the net water flux. Removal of K+ from the Ringer solution on both serosal and mucosal sides also reduced the PD and the net water flux to approximately zero. On the other hand, blocking the Na+–K+ pump by ouabain, K+-free or Na+-free Ringer solution increased the diffusion potential for Cl. Inhibition of Cl transport and increment in Cl permeability by ouabain occurred almost simultaneously. It is likely, therefore, that Cl transport as well as Cl permeability is dependent on Na+–K+ pump activity. A possible mechanism of dependence of Cl transport on the Na+–K+ pump is discussed in relation to the increment in Cl permeability.  相似文献   

10.
One-year old nectarine trees [Prunus persica, Batsch var. nectarina (Ait.) Maxim.], cv Nectaross grafted on P.S.B2 peach seedlings [Prunus persica (L.) Batsch] were grown for five months in 4-litre pots filled with two alkaline soils, one of which was also calcareous. Soils were regularly subjected to fertigation with either ammonium sulphate or calcium nitrate providing a total of 550 mg N/tree. Trees were also grown in such soils receiving only deionized water, as controls. Rhizosphere pH, measured by the use of a microelectrode inserted in agar sheet containing a bromocresol purple as pH indicator and placed on selected roots, was decreased by about 2–3 units compared to the bulk soil pH in all treatments. This decrease was slightly less marked when plants were supplied with calcium nitrate rather than ammonium sulphate or control. Measurements conducted during the course of the experiment indicated that ammonium concentration was similar in the solution of soils receiving the two N fertilizers. During the experiment, soil solution nitrate-N averaged 115 mg L–1 in soil fertilized with calcium nitrate, 68 mg L–1 in those receiving ammonium sulphate and 1 mg L–1 in control soils. At the end of the experiment nitrate concentrations were similar in soils receiving the two N sources and bulk soil pH was decreased by about 0.4 units by ammonium sulphate fertigation: these evidences suggest a rapid soil nitriflcation activity of added ammonium. Symptoms of interveinal chlorosis in apical leaves appeared during the course of the experiment in trees planted in the alkaline-calcareous soil when calcium nitrate was added. The slightly higher rhizosphere pH for calcium nitrate-fed plants may have contributed to this. The findings suggest that using ammonium sulphate in a liquid form (e.g. by fertigation) in high-pH soils leads to their acidification and the micronutrient availability may be improved.  相似文献   

11.
Summary Transport of protons and halide ions through planar lipid bilayers made from egg lecithin and a long-chain secondary amine (n-lauryl [trialkylmethyl] amine) inn-decane was studied. Net proton fluxes were measured with a pH electrode, and halide fluxes were measured with82Br and36Cl. In membranes containing the secondary amine, a large net proton flux was produced either by a Br gradient with symmetrical pH or by a pH gradient with symmetrical Br, but not by a pH gradient in Br-free solutions. This H+ flux was electrically silent (nonconductive), and the H+ permeability coefficient was >10–3 cm sec–1 in 0.1m NaBr. In Br-free solutions, H+ selectivity was observed electrically by measuring conductances and zero-current potentials generated by H+ activity gradients. The permeability coefficient for this ionic (conductive) H+ flux was about 10–5 cm sec–1, several orders of magnitude smaller than the H+ permeability of the electroneutral pathway. Large electroneutral Br exchange fluxes occurred under symmetrical conditions, and the permeability coefficient for Br exchange was about 10–3 cm sec–1 at pH 5. The one-way Br flux was inhibited by substituting SO 4 = for Br on the trans side of the membrane. These results support a titratable carrier model in which the secondary amine exists in three forms (C, CH+ and CHBr). Protons can cross the membrane either as CHBr (nonconductive) or as CH+ (conductive), whereas Br crosses the membrane primarily as CHBr (nonconductive). In addition to these three types of transport, there is also a pH-dependent conductive flux of Br which has a permeability coefficient of about 10–7 cm sec–1 at pH 5. Experiments with lipid monolayers suggest that the pH dependence of this conductive flux is caused by a change in surface potential of about +100 mV between pH 9.5 and 5.0.  相似文献   

12.
A mechanism that confers increased Al resistance in the Arabidopsis thaliana mutant alr-104 was investigated. A modified vibrating microelectrode system was used to measure H+ fluxes generated along the surface of small Arabidopsis roots. In the absence of Al, no differences in root H+ fluxes between wild type and alr-104 were detected. However, Al exposure induced a 2-fold increase in net H+ influx in alr-104 localized to the root tip. The increased flux raised the root surface pH of alr-104 by 0.15 unit. A root growth assay was used to assess the Al resistance of alr-104 and wild type in a strongly pH-buffered nutrient solution. Increasing the nutrient solution pH from 4.4 to 4.5 significantly increased Al resistance in wild type, which is consistent with the idea that the increased net H+ influx can account for greater Al resistance in alr-104. Differences in Al resistance between wild type and alr-104 disappeared when roots were grown in pH-buffered medium, suggesting that Al resistance in alr-104 is mediated only by pH changes in the rhizosphere. This mutant provides the first evidence, to our knowledge, for an Al-resistance mechanism based on an Al-induced increase in root surface pH.  相似文献   

13.
Kurdish  I. K.  Antonyuk  T. S.  Chuiko  N. V. 《Microbiology》2001,70(1):91-95
Dependence of motility and chemotaxis was studied in two strains of Bradyrhizobium japonicum upon several environmental factors. In both strains, chemotaxis was found to increase with an increasing concentration of the attractant (glucose) to 5.5 × 10–2 M. Both motility and chemotaxis reached their maximum in the two- to three-day cultures at neutral pH. The maximum motility of these bacteria occurred at 40°C. The maximum values of chemotaxis in these microorganisms were, however, observed at 20–25°C. Chemotaxis in acidic or alkaline media and at low temperatures was found to be markedly weaker. Nonoptimal values of these parameters in soil may be a limiting factor for the interaction of the given bacteria with soybean roots.  相似文献   

14.
Summary The effect of the valence of the associated cation on Cl-uptake by excised barley roots grown in CaSO4 has been studied at 26°, 6° and 2°C. The uptake of Cl relative to that of the associated cation was found to increase in the order: trivalent > divalent > monovalent. This was explained on the expected effect of the cation on the negative charge and potential of root surfaces. A lyotropic order was observed in case of monovalent cations, whereas divalent cations showed no such order. The order observed in Cl-uptake from chloride solutions of monovalent cations is associated with the ability of the absorbed cation to remove Ca and Mg from the roots. Li+ behaved similar to divalent cations in affecting the relative Cl-uptake from LiCl.As to the effect of temperature on the uptake of Cl and associated cation, it appears that Cl is not taken up to any great extent at 2°C whereas cations are still adsorbed at this low temperature. This has been explained on the assumption of the presence of negative adsorption spots on the root surface which can hold cations but not anions. It appears that Cl-uptake by roots requires the expenditure of energy to overcome repulsion arising from the negative surface.This work is supported by AEC contract AT (11-1) — 34 project 55.  相似文献   

15.
Bolan  N. S.  Adriano  D. C.  Duraisamy  P.  Mani  A.  Arulmozhiselvan  K. 《Plant and Soil》2003,250(1):83-94
The effect of phosphate on the surface charge and cadmium (Cd) adsorption was examined in seven soils that varied in their variable-charge components. The effect of phosphate on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. Addition of phosphate, as KH2PO4, increased the pH, negative charge and Cd adsorption by the soils. Of the seven soils examined, the three allophanic soils (i.e., Egmont, Patua and Ramiha) exhibited greater increases in phosphate-induced pH, negative charge and Cd2+ adsorption over the other four non-allophanic soils (i.e., Ballantrae, Foxton, Manawatu ad Tokomaru). Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of phosphate effectively reduced the phytotoxicity of Cd. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of phosphate decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fraction in soil. The phosphate-induced alleviation of Cd phytotoxicity can be attributed primarily to Cd immobilization due to increases in pH and surface charge.  相似文献   

16.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J.  Jama  B. 《Plant and Soil》2002,246(1):53-63
A field experiment in western Kenya assessed whether the agroforestry species Tithonia diversifolia (Hemsley) A. Gray, Tephrosia vogelii Hook f., Crotalaria grahamiana Wight & Arn. and Sesbania sesban (L) Merill. had access to forms of soil P unavailable to maize, and the consequences of this for sustainable management of biomass transfer. The species were grown in rows at high planting density to ensure the soil under rows was thoroughly permeated by roots. Soil samples taken from beneath rows were compared to controls, which included a bulk soil monolith enclosed by iron sheets within the tithonia plot, continuous maize, and bare fallow plots. Three separate plant biomass samples and soil samples were taken at 6-month intervals, over a period of 18 months. The agroforestry species produced mainly leaf biomass in the first 6 months but stem growth dominated thereafter. Consequently, litterfall was greatest early in the experiment (0–6 months) and declined with continued growth. Soil pH increased by up to 1 unit (from pH 4.85) and available P increased by up to 38% (1 g P g–1) in agroforestry plots where biomass was conserved on the field. In contrast, in plots where biomass was removed, P availability decreased by up to 15%. Coincident with the declines in litterfall, pH decreased by up to 0.26 pH units, plant available P decreased by between 0.27 and 0.72 g g–1 and Po concentration decreased by between 8 and 35 g g–1 in the agroforestry plots. Declines in Po were related to phosphatase activity (R2=0.65, P<0.05), which was greater under agroforestry species (0.40–0.50 nmol MUB s–1 g–1) than maize (0.28 nmol MUB s–1 g–1) or the bare fallow (0.25 nmol MUB s–1 g–1). Management of tithonia for biomass transfer, decreased available soil P by 0.70 g g–1 and Po by 22.82 g g–1. In this study, tithonia acquired Po that was unavailable to maize. However, it is apparent that continuous cutting and removal of biomass would lead to rapid depletion of P stored in organic forms.  相似文献   

17.
Summary Simultaneous measurements of transepithelial potential difference (PD) and net water flux were made in the stripped seawater eel intestine, and the effects of removal of Ca2+ and replacement of Cl with other anions on these two parameters were examined. Removal of Ca2+ from normal (NaCl) Ringer solution on both mucosal and serosal sides reduced the serosa-negative PD and the net water flux. Since SO 4 2– binds Ca2+ strongly, the effects of substitution of SO 4 2– for Cl could be due to deficiency in both Cl and Ca2+. Among five anions used in this study, CH3SO 4 (with low affinity to Ca2+) seems to be the most suitable substitute for Cl. When both mucosal and serosal Cl were replaced with CH3SO 4 , both the PD and the net water flux decreased to approximately zero. When mucosal Cl was replaced progressively with other anions, the serosa-negative PD and the net water flux decreased in association with the decrease in Cl concentration, and a linear regression was observed between the decrease in the net water flux and that in the PD. These results indicate that Na+ and water transport depend closely on Cl transport.  相似文献   

18.
Bulbous rush (Juncus bulbosus) is a pioneer species in acidic, iron-rich, coal mining lakes in the eastern part of Germany. Juncus roots are coated with iron plaques, and it has been suggested that microbial processes under the iron plaques might be supportive for Juncus plant growth. The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 106 Fe(III) reducers and 107 Fe(II) oxidizers g (fresh wt root)–1 were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) –1 d–1 and 3.6 mmol g (fresh wt root)–1 d–1 under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO2 and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO2 levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.  相似文献   

19.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

20.
The net charge of a folded protein is hypothesized to influence myriad biochemical processes (e.g., protein misfolding, electron transfer, molecular recognition); however, few tools exist for measuring net charge and this elusive property remains undetermined—at any pH—for nearly all proteins. This study used lysine-acetyl “protein charge ladders” and capillary electrophoresis to measure the net charge of superoxide dismutase-1 (SOD1)—whose aggregation causes amyotrophic lateral sclerosis (ALS)—as a function of coordinated metal ions and pH. The net negative charge of apo-SOD1 was similar to predicted values; however, the binding of a single Zn2 + or Cu2 + ion reduced the net negative charge by a greater magnitude than predicted (i.e., ~ 4 units, instead of 2), whereas the SOD1 protein underwent charge regulation upon binding 2–4 metal ions. From pH5 to pH8 (i.e., a range consistent with the multiple subcellular loci of SOD1), the holo-SOD1 protein underwent smaller fluctuations in net negative charge than predicted (i.e., ~ 3 units, instead of ~ 14) and did not undergo charge inversion at its isoelectric point (pI = 5.3) but remained anionic. The regulation of SOD1 net charge along its pathways of metal binding, and across solvent pH, provides insight into its metal-induced maturation and enzymatic activity (which remains diffusion-limited across pH5–8). The anionic nature of holo-SOD1 across subcellular pH suggests that ~ 45 different ALS-linked mutations to SOD1 will reduce its net negative charge regardless of subcellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号