首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-methyl-4-phenylpyridine (MPP+) is the putative toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and is structurally similar to the herbicide paraquat (PQ++). We have therefore compared the effects of MPP+ and PQ++ on a well characterized experimental model, namely isolated rat hepatocytes. PQ++ generates reactive oxygen species within cells by redox cycling and its toxicity to hepatocytes was potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. In BCNU-treated cells, PQ++ caused GSH depletion, lipid peroxidation and cell death. These cytotoxic effects were prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) and the iron-chelating agent desferrioxamine. MPP+ also caused GSH depletion in BCNU-treated hepatocytes but its cytotoxicity was not markedly affected by BCNU, nor was it accompanied by significant lipid peroxidation. DPPD and desferrioxamine also failed to prevent MPP+-induced cell death. We conclude that the production of active oxygen species is likely to play a major role in PQ++ cytotoxicity, while MPP+-induced cell damage may involve additional, more important toxic mechanisms.  相似文献   

2.
Summary 1. Intracerebral injection of the oxidative metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridine (MPP+), into the substantia nigra of adult rats resulted in a lesion at the injection site.2. Using autoradiography, we localized specific [125]CGP 42112 binding that was not recognized by angiostensin II or angiotensin II AT1 or AT2 receptorselective ligands.3. Our results suggest that [125I]CGP 42112 may be binding to activated microglia that appear at the lesion site.  相似文献   

3.
1-Methyl-4-phenylpyridine (MPP+) induces oxidative stress in the rodent   总被引:1,自引:0,他引:1  
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) produces an irreversible parkinsonism in primates. Recent evidence suggests metabolism of MPTP to 1-methyl-4-phenylpyridine (MPP+) is required for toxicity. We have proposed that MPP+ may play a central role in the toxicity of MPTP, but direct assessment of the effects of MPP+ in brain is difficult. Therefore, we have sought to define the mechanism of peripheral MPP+ toxicity in the rat and mouse. Systemically administered MPP+ produced its major pathology in the lung and was typified by perivascular edema. An increase in plasma glutathione disulfide concentrations also resulted, suggesting that MPP+ in analogy to paraquat produces oxidative stress. In addition, the lethality of MPP+ in the mouse was increased by dietary selenium deficiency. These results define in both pathological and chemical terms the potent systemic toxicity of MPP+ and suggest that MPP+, because of its high concentration in primate brain, has the potential to play an important role in the CNS toxicity of MPTP.  相似文献   

4.
Selective dopaminergic neurotoxicity induced by 1-methyl-4-phenylpyridine (MPP+) is believed to be due to the transmembrane uptake by the dopamine transporter and subsequent inhibition of mitochondrial complex I and/or production of free radicals. However, little is known about the molecular sequence of intracellular events leading to cell death induced by low concentrations of MPP+. Here we stably express the human dopamine transporter (hDAT) in human embryonic kidney HEK-293 cells to correlate cytotoxicity and indices of cellular energy metabolism after exposure to low concentrations of MPP+. The permanent ektopic expression of hDAT in HEK-293 cells confers time and dose-dependent cytotoxicity at nanomolar concentrations of MPP+ with an IC50 value of 740 nM after 48 h. MPP+ initially induces a fast increase of cellular NADH content within the first 6 h, followed by a slow reduction of intracellular ATP (IC50 value of 690 nM after 48 h) as well as reduction of intracellular ATP/ADP ratio. These changes of cellular energy metabolism precede reduction of cell viability. The toxic effects of MPP+ are blocked by the hDAT inhibitor GBR12909 with EC50 values of 110 and 60 nM for cytotoxicity and ATP depletion, respectively. Antioxidants such as D-alpha-tocopherol and ascorbic acid do not have significant protective effects against MPP+ toxicity. This study shows that HEK-293 cells expressing the hDAT gene are highly sensitive to MPP+ due to (i) transmembrane uptake of MPP+ by the dopamine transporter, (ii) cellular energy depletion, probably caused by inhibition of mitochondrial complex I activity and (iii) that the toxicity is independent from the presence of antioxidants. This cell system may serve as a screening system for endogenous and exogenous compounds with similar effects compared to MPP+ as well as protective agents.  相似文献   

5.
Effects of 1-methyl-4-phenylpyridine(MPP+), a putative neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), on the contents of dopamine were examined in the various regions of the rat brain. Under anesthesia with pentobarbital sodium and flunitrazepam, MPP+ 150 micrograms/rat was intracerebroventricularly infused for 5 hours, at 30 micrograms/100 microliters/hr. Seven days later, the contents of dopamine, but not those of noradrenaline and activities of choline acetyl transferase in the brain were found to be significantly decreased, as compared to findings in the respective controls. The MPP+-induced depletion of dopamine was most evident in the striatum (38% of control). Contents of dopamine in the substantia nigra and ventral tegmental area were not significantly affected by MPP+. These results are interpreted to mean that intracerebroventricular continuous infusion of MPP+, in a relatively low concentration, induces a moderate but relatively specific disruption of central dopaminergic nerve terminals in rats, presumably by the selective accumulation of this neurotoxic agent into these nerve terminals.  相似文献   

6.
1-methyl-4-phenylpyridine (MPP+), a major product of the oxidation of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been postulated to be the compound responsible for destruction of nigrostriatal neurons in man and primates and for inhibition of mitochondrial NADH oxidation which leads to cell death. We have confirmed that 0.5 mM MPP+ inhibits extensively the oxidation of NAD+-linked substrates in intact liver mitochondria in State 3 and after uncoupling, while succinate oxidation is unaffected. However, in inverted mitochondria, inner membrane preparations, and Complex I NADH oxidation is not significantly affected at this concentration of MPP+, nor are malate and glutamate dehydrogenases or the carriers of these substrates inhibited. We report here the discovery of an uptake system for MPP+ in mitochondria which is greatly potentiated by the presence of malate plus glutamate and inhibited by respiratory inhibitors, suggesting an energy-dependent carrier. A 40-fold concentration of MPP+ in the mitochondria occurs in ten minutes. This might account for the inhibition of malate and glutamate oxidation in intact mitochondria.  相似文献   

7.
1. The neurosteroids are compounds derived from steroid hormones and synthesized in the nervous system. They can modulate different neurotransmitter pathways. In previous work we demonstrated that progesterone modulates dopamine release induced by the glutamatergic agonist N-methyl-D-aspartic acid (NMDA).2. The aim of this work was to evaluate a possible modulatory role of the progesterone metabolite allopregnanolone on NMDA-evoked [3H]dopamine release from corpus striatum slices obtained from cycling and ovariectomized female rats.3. We used a dynamic superfusion method to evaluate the release of [3H]dopamine. Allopregnanolone at 50–600 nM was added to the superfusion buffer (Krebs–Ringer–bicarbonate–glucose, pH 7.4, with constant O2/CO2 gassing). The results are expressed as a percentage over basal [3H]dopamine loaded by the tissue.4. Allopregnanolone (50 and 100 nM) increased the NMDA-evoked[3H]dopamine release from estrus rats. The remaining doses did not show significant changes in the pattern of release. This effect was not observed in diestrus rats. The ovariectomy abolished the facilitatory effect of allopregnanolone on NMDA-evoked 2 [3H]dopamine release.5. Subcutaneous administration of exogenous estrogen (25 mg/rat) and progesterone (1 mg/rat) restored the facilitatory effect on dopaminergic input.6. These results suggest that allopregnanolone is a neurosteroid able to modulate dopamine release in an ovarian-hormone-fluctuation-dependent manner and provide further support for a role of allopregnanolone as a modulator of glutamatergic–dopaminergic interaction in the corpus striatum.  相似文献   

8.
In order to clarify the structural requirements associated with the inhibition of mitochondrial respiration by MPP+, the neurotoxic metabolites of the Parkinsonian agent MPTP, ten sets of pyridine/N-methylpyridinium pairs and a few miscellaneous compounds were evaluated on rat liver intact mitochondria (Mw) and on submitochondrial particles (SMP). The pyridinium partners were much more potent inhibitors on Mw than on SMP, indicating that they are concentrated inside mitochondria by the energy-dependent process previously reported for MPP+, probably as a consequence of non-specific passive transport across the mitochondrial inner membrane in response to the transmembrane potential. In the SMP assay, the neutral pyridines were stronger inhibitors than were the pyridinium cations, and the inhibitory potency varied little with structural changes. The N-methylated forms of beta-carbolines may act as endogenous MPP+-like agents.  相似文献   

9.
The systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice produces a reliable and selective degeneration of the nigrostriatal pathway, a hallmark feature of Parkinson's disease (PD). Determining the brain concentrations of 1-methyl-4-phenyl pyridium (MPP+), the neurotoxic metabolite of MPTP, is critical for evaluating drugs designed to potentially treat PD. We have developed sensitive and specific quantitative methods for the determination of MPP+ in mouse striatal tissue by liquid chromatography/tandem mass spectrometry. The separations were carried out based on reversed phase chromatography or cation exchange chromatography with volatile elution buffer. Neutralizing the brain sample with 0.2M phosphate buffer successfully solved a high-performance liquid chromatography (HPLC) peak tailing of MPP+ in brain extracts with 0.4M perchloric acid (HClO4) under the reversed phase HPLC conditions, which significantly improved the sensitivity of the method. The HPLC peak shape of MPP+ using cation exchange chromatography was not affected by the pH of the samples. Optimization of electrospray ionization (ESI) conditions for the quaternary ammonium compound MPP+ established the limits of detection (LOD) (S/N=3) at 0.34pg/mg tissue and 0.007pg/mg tissue (5microl of injection) using the reversed phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the cation exchange LC/MS/MS, respectively. Both methods were selective, precise (%R.S.D.<6%), and sensitive over a range of 0.001-1ng/mg tissue. The cation exchange method showed greater sensitivity and tolerance to low pH samples than the reversed phase method. The developed methods were applied to monitoring changes in MPP+ concentrations in vivo. Two reference agents, R-(-) Deprenyl and MK-801, known to alter the concentration of MPP+ in MPTP treated mice were evaluated.  相似文献   

10.
1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation.  相似文献   

11.
The present study was examined whether diltiazem, a L-type Ca2+ channel antagonist, could suppresses 1 methyl-4-phenylpyridinium ion (MPP+)-induced dopamine (DA) in extracellular fluid of rat striatum. Ouabain (100 microM; 100 microM or 100 pmol/microl per min) significantly enhanced the level of DA by MPP+. However, in the presence of diltiazem (100 microM) significantly suppressed the level of DA release by ouabain and MPP+. These results suggest that diltiazem suppresses Ca2+ -dependent release of DA by ouabain-induced Ca2+ overload.  相似文献   

12.
We examined the properties of voltage-dependent Ca(2+) channels (VDCCs) mediating 1-methyl-4-phenylpyridinium (MPP(+))-evoked [3H]DA release from rat striatal slices. In some cases, the Ca(2+)-independent efflux of neurotransmitters is mediated by the high-affinity neurotransmitter-uptake systems. To determine whether such a mechanism might be involved in MPP(+)-evoked [3H]DA release. MPP(+) (1,10 and 100 microM) evoked the release of [3H]DA from rat striatal slices in a concentration-dependent manner. In the absence of Ca(2+), MPP(+) (10 and 100 microM)-evoked [3H]DA release was significantly decreased to approximately 50% of control (a physiological concentration of Ca(2+)). In the presence of Ca(2+), nomifensine (0.1,1 and 10 microM) dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA. Nomifensine (1 and 10 microM) also dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA under Ca(2+)-free conditions. MPP(+)-evoked [3H]DA release was partly inhibited by nicardipine (1 and 10 microM), an L-type Ca(2+) channel blocker. On the other hand, the N-type Ca(2+) channel blocker omega-conotoxin-GVIA (omega-CTx-GVIA) (1 and 3 microM) did not affect this release. omega-agatoxin-IVA (omega-Aga-IVA) at low concentrations (0.1 microM), which are sufficient to block P-type Ca(2+) channels alone, also had no effect. On the other hand, MPP(+)-evoked [3H]DA release was significantly decreased by high concentrations of omega-Aga-IVA (0.3 microM) that would inhibit Q-type Ca(2+) channels. In addition, application of the Q-type Ca(2+) channel blocker omega-conotoxin-MVIIC (omega-CTx-MVIIC) (0.3 and 1 microM) also significantly inhibited MPP(+)-evoked [3H]DA release. These results suggest that MPP(+)-evoked [3H]DA release from rat striatal slices is largely mediated by Q-type Ca(2+) channels, and the Ca(2+)-independent component is mediated by reversal of the DA transport system.  相似文献   

13.
Inhibition of mitochondrial energy production by MPP+ may be the key step in chemically-induced Parkinson's disease. Tetraphenylboron (TPB-) markedly enhances the effect of MPP+. Inhibition of respiration and uptake of MPP+ are accelerated, the former by up to two orders of magnitude. TPB increases the final concentration of MPP+ in the matrix by 2-3 fold, insufficient to explain the rapid inhibition of respiration. TPB- lowers the membrane surface potential by only about 20%, but increases the partitioning of MPP+ into organic solvent by one order of magnitude. TPB- also enhances the effect of MPP+ on inverted membranes, reducing the I50 by an order of magnitude. We suggest that TPB- acts by ion pairing with MPP+ to facilitate penetration into mitochondria as well as access to a hydrophobic inhibition site on NADH dehydrogenase.  相似文献   

14.
[3H]Spiperone was administered (20 microCi/kg, 0.0003 mg/kg, sc) to mice. In agreement with other published reports, 2 hr later the accumulation of tritium was three to four times greater in the corpus striatum than in the cerebellum. Ascorbic acid (100, 1000, 2000 mg/kg, ip, 30 min) reduced the 2-hr accumulation in the corpus striatum 16, 42, and 63%, respectively, with only the highest dose producing any significant (18%) reduction in the cerebellum. The effect was still evident in striatum 18 hr after a single dose of 1000 mg/kg. Striatal minces taken from mice treated 1 or 2 hr earlier with ascorbic acid (2000 mg/kg, ip) showed no reduction in [3H]spiperone binding. However, preincubation of striatal minces for 2 hr with ascorbic acid (10(-3) M) produced an 82% reduction in specific binding while not having any effect on nonspecific binding. While it cannot be certain that the reduction of striatal [3H]spiperone concentrations after ascorbic acid in vivo was not a result of some nonspecific alteration in the pharmacokinetics of [3H]spiperone, the in vitro observation strongly suggests that it resulted from an alteration of binding characteristics at the receptor level.  相似文献   

15.
Metaphit, an acylating derivative of phencyclidine, was shown to interact with components of the dopamine nerve terminal in rat striatal tissue. This compound, previously demonstrated to be an irreversible inhibitor at the phencyclidine receptor, was shown in these experiments to irreversibly inhibit synaptosomal [3H]dopamine uptake. It also inhibited binding of [3H]methylphenidate to its recognition site, which is thought to be a subunit of the dopamine transporter. Although the inhibition was due primarily to a reduction in the binding and transport capacity of the systems studied, increases in the apparent KD of [3H]methylphenidate and the Km of [3H]dopamine were also observed. Differences in the behavior of Metaphit and phencyclidine in these dopaminergic systems compared to their effects on the NMDA receptor-linked phencyclidine receptor suggest that Metaphit may be interacting with two distinct molecular sites in the rat striatum.  相似文献   

16.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

17.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+.  相似文献   

18.
The effects of quaternary N-methylated nicotine derivatives were examined on in vitro uptake of [3H]dopamine ([3H]DA) in rat striatal slices. Striatal slices were incubated with a 10 microM concentration of the following compounds: N-methylnicotinium, N-methylnornicotinium, N-methylcotininium, N,N'-dimethylnicotinium and N'-methylnicotinium salts. The results clearly indicated that significant (60%) inhibition of [3H]DA uptake occurred with those compounds possessing a N-methylpyridinium group; whereas, compounds that were methylated at the N'-pyrrolidinium position were less effective or exhibited no inhibition of [3H]DA uptake. The results suggest that high concentrations of quaternary N-methylated nicotine metabolites which are structurally related to the neurotoxin MPP+, and which may be formed in the CNS, may protect against Parkinson's Disease and explain the inverse relationship between smoking and Parkinsonism reported in epidemiologic studies.  相似文献   

19.
The administration of 1-methyl-4-phenylpyridinium (MPP+) to cultures of adrenal medullary chromaffin cells resulted in time and concentration-dependent increases in the cellular content of MPP+. Co-incubation of cells with MPP+, in the presence of desmethylimipramine (DMI), reduced but did not prevent the accumulation of the pyridinium in these cells. Similarly, DMI and MPP+ co-administration reduced but did not prevent the neurotoxicant-induced release of a cytosolic marker, lactate dehydrogenase, into the media. Molecular orbital calculations reveal that the positive charge of MPP+ is highly delocalized throughout the pyridinium ring and consequently MPP+ may be able to diffuse down concentration or charge gradients. Thus, these data provide a basis for the entry of MPP+ into cells and subcellular organelles that lack a catecholamine transporter, e.g. mitochondria.  相似文献   

20.
Cell-free extracts of Acremonium chrysogenum and Streptomyces clavuligerus oxidize the 3-methyl group of desacetoxycephalosporin C to a 3-hydroxymethyl group. The enzyme responsible for this reaction in these organisms was purified 20- and 30-fold respectively by chromatography on DEAE-cellulose. The enzymes, which were assayed with [3-methyl-3H]desacetoxycephalosporin C as substrate, have the properties expected of 2-oxoglutarate-linked dioxygenases. They require 2-oxoglutarate, Fe2+ cations and a mixture of reducing agents (dithiothreitol and ascorbate) for full activity. The enzyme from A. chrysogenum, but not that S. clavuligerus, is activated about 10-fold when it is preincubated with a reaction mixture from which either desacetoxycephalosporin C or 2-oxoglutarate is omitted. Fe2+ cations seem to play a key role in this activation. Both enzymes seem highly specific for cephalosporins with the natural 7beta-(5-D-aminoadipamido) side chain and are likely to be responsible for the oxidation of the 3-methylcephem nucleus in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号