首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Needle hardiness of introduced yellow pine, Pinus banksiana Lamb., lodgepole pine, P. contorta Dougl, and native white spruce, Picea glauca (Moench) Voss, were assessed by the effective prefreezing temperature method. Yellow pine needles were less hardy than lodgepole pine or white spruce needles in Alaska on each date measured. Although hardiness decreased in springtime in all species, decreases in hardiness in yellow pine began before temperatures were above ?20°C, apparently in response to day length, while decreases in hardiness in lodgepole pine and white spruce began only when mean temperatures were above 0°C. Hardiness was increased by decreasing the water content of yellow pine and spruce needles. However, only the latter increased its field hardiness by decreased water contents, and only to a small degree. Large decreases in phospholipid occurred during the dehardening period, indicating the presence of major membrane-associated changes. However, changes in hardiness did not closely parallel those in phospholipid; hardiness decreased before phospholipid did in spruce and after phospholipid did in lodgepole pine. In yellow pine, changes in hardiness were more closely related to changes in phospholipid content. Decreases in phospholipid appeared to be correlated with the day length in all species.  相似文献   

2.
Phospholipid (PL) and fatty acid composition of chloroplasts of pine needles ( Pinus sylvestris L.) and apple bark tissue ( Malus sylvestris Mill. cv. Golden Delicious) was determined in a series of experiments in which growth temperature and daylength were changed. Trees were exposed to 0 and 20°C and to daylength conditions of 9 and 14 h. All 16 possible combinations were investigated by transfer of the trees from the original condition to each of the other conditions. There was no direct relation between cold hardiness and PL composition in apple bark and pine chloroplasts, when temperature and/or daylength were changed. PL composition seemed to be strongly determined by the sequence of the imposed sets of daylength and temperature. The effect of these environmental factors on PL composition strongly differed from that for cold hardiness. The correlation between the levels of PL (and phosphatidylcholine) and cold hardiness, as reported in the literature, was also evident in this experiment, when treatments, presenting the normal seasonal order, were compared. It seems that the yearly cycle of temperature and daylength is important in determining the PL composition of apple bark and pine chloroplasts.  相似文献   

3.
Glycolipids, neutral lipids and chlorophyll of chloroplasts of pine needles ( Pinus sylvestris L.) and apple bark tissue ( Malus sylvestris Mill. cv Golden Delicious) were determined in a series of experiments in which growth temperature and daylength were changed. Trees were exposed to 0 and 20°C and to daylength conditions of 9 and 14 h. All 16 possible combinations were studied by transfer of the trees from the original condition to each of the other conditions. There was no direct relation between cold hardiness and glycolipid composition in apple bark and pine chloroplasts, when temperature and/or daylength were changed. Glycolipid and neutral lipid composition seemed to be strongly determined by the sequence of the imposed sets of daylength and temperature, and the effects of these factors on lipids strongly differed from that on cold hardiness. When the treatments were given in seasonal order, the corresponding changes in chloroplast glycolipids matched those reported in the literature for needles collected in the forest the year around. Glycolipid synthesis could well be under phytochrome control.  相似文献   

4.
In vitro-grown saskatoon berry (Amelanchier alnifolia Nutt.) plantlets were exposed to various hormonal treatments, dormancy-inducing and cold acclimation conditions to determine if this in vitro system would be viable for dormancy/hardiness studies in woody plants. Low temperature induced significant hardiness levels in plantlets to ?27°C after 6 weeks at 4°C but did not approach liquid nitrogen levels of fully hardened, field-grown buds. Control plantlets were consistently killed at ?5°C throughout this period. Significant hardiness was attained under both short and long day/low temperature conditions; however, hardiness was reduced under continuous light or dark treatments. A pre-exposure to the typical short photoperiod regime of woody plants did not significantly increase the rate of acclimation in these plantlets. The presence/absence of phytohormones in the media have a pronounced influence on the ability of plantlets to cold acclimate. Hormone-free media increased hardiness to ?10.5°C after 2 weeks in treatment. Addition of abscisic acid (ABA) increased cold hardiness levels (?12°C) while addition of benzylaminopurine (BAP) to this hormone-free media decreased hardiness to ?5.3°C. A combination of BAP and ABA treatments produced LT50 values intermediate between individual applications of either hormone. Conversely, α-naphthaleneacetic acid (NAA) could not counteract the ABA-induced hardiness. ABA treatments alone were not able to harden plantlets to the extent attained under low temperature acclimation conditions. Further, ABA could not maintain the hardiness levels of cold-acclimating treatments and plantlets de-acclimated to ?9°C in BAP + ABA media. Subculturing in itself significantly elevated cold hardiness in plantlets to ?9°C on BAP + NAA media within 3 days after subculture and thereafter plantlets dehardened to ?5°C. While tissue culture has value in specific cases, caution should be taken when using tissue-cultured plantlets as a system to evaluate environmental regulation of cold acclimation in woody plants, in part, due to the influence of phytohormones in the media.  相似文献   

5.
Both CCC and cold (5°C) treatment gave rise to an increased content of the water-soluble proteins in leaf tissue of the winter rape, irrespective of the day length. This effect was accompanied by a decrease of the insoluble nitrogen compounds content, mainly under theLD (the 16 hour day). The applied retardant also stimulated the consumption of the structural compounds induced by low temperature. Low temperature treatment hardened plants more distinctly than the CCC application. The frost hardening effect of CCC andSD (the 8 hour day) was manifested only at 20°C and it disappeared at 5°C. Changes in frost hardiness were not correlated with the changes in the reducing sugar content and in the reducing ability of the studied tissue. The coincident effect of CCC and cold on the reducing sugar content was observed underSD conditions.  相似文献   

6.
The purpose of this work was to examine environmental control of expression, at the mRNA level, of cold-inducible genes and to test the relationship of the expression of the genes to cold acclimation. Barley plants (Hordeum vulgare L. cv. Igri) at the three- to four-leaf stage were (a) grown in different temperature environments between 20/15°C and +4/-4°C or (b) transferred between 20/15°C and 6/2°C or (c) grown under drought or nutrient stress conditions. Frost hardiness (using a regrowth method) and mRNA levels for three cold-induced genes, blt4-9, blt14 and blt101, from meristematic crown tissue (vegetative shoot meristem plus subtending stem and associated root initials) were measured. Hardiness and levels of blt4-9, blt14 and blt101 mRNAs increased with lower growth temperatures, below a maximum inductive temperature. Prior temperature environment and plant age affected the rate of change in mRNA levels of these genes in response to a change of temperature environment. Hardiness was strongly correlated with mRNA levels of these genes in plants grown in different temperature environments. This correlation did not extend to plants exposed to drought or nutrient stresses. Implications are drawn for plant responses to a warmer climate.  相似文献   

7.
The influence of short days and low temperature on the development of frost hardiness in seedlings of Scots pine (Pinus silvestris L.) and Norway spruce [Picea abies (L.) Karst.], grown for 6 months in glasshouses and climate chambers, was investigated. The degree of hardiness was estimated by freezing the shoots of the seedlings to predetermined temperatures. After 8 weeks in a glasshouse the viability of the seedlings was determined by establishing bud flushing. The most effective climate for the development of frost hardiness was short days (SD) and low temperature (2°C); the next most effective was SD and room temperature (20°C). However, long days (LD) and low temperature also had a marked effect on the development of hardiness. A combination of 3 weeks’treatment with SD and 20°C, and 3 weeks with SD and 2°C gave the same results as 6 weeks with SD and 2°C. The results clearly demonstrate the importance of the photoperiod prior to low temperature for the development of frost hardiness. In conclusion both short days and low temperature induce frost hardiness development. Probably this occurs by initiation of different processes in the two cases. The degree of frost hardiness development appears to depend on the sum of these different processes and on the timing between them.  相似文献   

8.
The effects of raised temperature and extended photoperiod onthe dehardening of quiescent and winter-hardy Scots pine saplingswere examined in an open-top-chamber experiment. The saplingswere exposed during winter to natural, square-curve fluctuating(between 1 and 11 °C with a 14 d interval), and constant(6 °C) temperatures with a natural and an extended (17 h)photoperiod. Frost hardiness of needles was determined by controlledfreezing tests and visual damage scoring. The constant 6 °Ctemperature treatment caused a gradual dehardening of needleswhereas under fluctuating temperatures the level of frost hardinessfluctuated. Trees exposed to extended photoperiods were lesshardy than under natural photoperiods after the initiation ofshoot elongation, but before this there were no clear differencesin frost hardiness between different photoperiodic treatments.The results indicate that the frost hardening competence ofScots pine changes during quiescence. Climate change; frost hardiness; hardening competence; photoperiod; Pinus sylvestris, Scots pine; temperature  相似文献   

9.
Abstract. Diapause adults of Plautia stali Scott maintained at 20°C under short day conditions (LD 12:12 h) were exposed to four temperatures of 5–20°C to examine the effect on diapause development which was assessed in terms of oviposition. Diapause adults kept at 20°C under short day conditions changed their body colour gradually from brown to green and started egg laying after a prolonged preoviposition period. Those transferred to either 10 or 15°C also showed colour change but did not lay eggs. Bugs exposed to 5°C underwent neither body colour change nor oviposition and died more rapidly than those kept at higher temperatures. When 30-day-old diapause adults were chilled at 5, 10 or 15°C for 30 or 60 days and returned to 20°C and long day conditions (LD 16:8 h), the preoviposition period varied primarily depending on the chilling, but not on the temperature. On the other hand, when 60day-old diapause adults chilled for 30 days were observed at 20°C and long day conditions, their preoviposition period tended to be longer as the chilling temperature was lower In this case, a temperature of 10°C appeared to intensify diapause. Therefore, the effect of chilling on diapause development varied depending on the age at which insects were chilled. When chilled bugs were transferred to short day conditions at 20°C, most females failed to lay any eggs and some turned green, then after a while, some green bugs changed to brown again. These results indicate that bugs remained sensitive to short day conditions even after a 60-day chilling at 10 or 15°C.  相似文献   

10.
Parsons LR  Li PH 《Plant physiology》1979,64(3):351-353
Moderate water stress increases frost hardiness in many woody plants but little attention has been given to changes in hardiness after recovery from water stress. Tests were carried out to examine how much water stress-induced frost hardiness remained when plants were rewatered under different day length regimes. Red osier dogwood plants (Cornus stolonifera Michx.) were water-stressed at normal growing temperatures in long day (LD) or short day (SD) conditions, exposed to 6 nights of freezing temperatures, and then returned to normal growing conditions with full water supply. Water-stressed plants gained an additional 8 to 10 C of hardiness. The amount of freeze-induced hardiness in both stressed and control plants was not significant (approximately 2 C) and was not affected by photoperiod. When plants were kept in or transferred to LD, they lost nearly all of their water stress-induced hardiness within 7 days after rewatering. Water-stressed plants in SD lost the least amount of hardiness (5 C) when rewatered. In dogwood, water stress is an effective way to increase hardiness temporarily, but the photoperiod has a large effect on the retention of the acquired hardiness.  相似文献   

11.
The cold hardiness of arthropods is an important characteristic associated with overwintering success. Cold‐tolerant stages affect overwintering strategy, especially in arthropods that continuously feed on evergreen host plants in temperate regions. However, cold hardiness to mildly low temperature is rarely investigated. In the present study, we estimate the stage‐specific cold hardiness of a population of the spider mite Stigmaeopsis longus (Saito) (Acari: Tetranychidae) occurring on evergreen Sasa bamboo in a temperate area (Kochi City, southwestern Japan). Individuals of each stage developing under diapause‐inducing conditions (LD 10 : 14 h at 20 °C) are maintained at 4 °C (approximating the mean daily minimum temperature for December in Kochi City) for 30 days (eggs are cooled immediately, without short‐day development first). They are then returned to the initial conditions to assess survival rates. The survival rate of adult females (i.e. the diapausing stage) is high (99.5%), as is that of adult males and deutonymphs of both sexes (84.2–98.7% and 89.7–89.8%, respectively). The survival rate of mobile immature stages tends to increase toward adulthood in both sexes, whereas the survival rate of the eggs and quiescent stages is extremely low (16–23% and 0–20%, respectively). The poor cold hardiness of the eggs and quiescent stages presumably prevents the normal development of immature individuals during winter.  相似文献   

12.
The time course of freezing damage in pine needles and in bark of apple trees was followed at different subzero temperatures. From these data the killing rate by freezing was determined for trees which differed in degree of cold hardiness. The activation energy of the killing reaction was also calculated. The killing rate was lowest in cold-acclimated trees, but the activation energy of the killing reaction was very high indicating a high degree of structured water in the cells. Non-acclimated trees showed uniform low values of the activation energy of the killing reaction at all subzero temperatures studied. It is suggested that intracellular supercooling could be a part of the mechanism of frost protection in cold-acclimated apple trees within the – 30 to – 20°C range, but not in the –20 to –10°C range.  相似文献   

13.
The role of environment on the dwarfing (short internode) phenomenon of apple (Malus domestisca Borkh.) was investi gated and defined in controlled environmental chambers. Orchard-grown very dwarf, dwarf and semi-dwarf trees obtained by natural sibcrossing of spur-type cv. Golden Delicious and cv. Delicious, as well as standard cv. Golden Delicious, were propagated via in vitro techniques. Growth was rapid and none of the 4 types exhibited dwarf-like characteristics when grown at constant 27°C with 12, 14 or 16 h daylengths. Standard and very dwarf plants grew at nearly the same rate at constant 30°C, whereas growth nearly ceased on both types at constant 35°C after 7 days. Dwarf and very dwarf plants responded differently from standard and semi-dwarf plants when grown under alternating (ramped) night/day temperatures (15 or 20°C night ramped up to a daytime maximum over 8 h of 23, 28, 33 or 38°C, held for 2 h and then ramped down over 5 h to the night temperature). As the night/maximum day temperature differentia) increased from 0 to 23° under the ramping environments, growth of dwarf plants decreased markedly as compared to standard plants. When the same night/maximum day temperature differential occurred, the effect on decreasing shoot length was greater at the higher (20°C) night temperature. Increasing maximum day temperatures under the ramped environment also reduced leaf area plant?1 but did not markedly affect leaf number, resulting in short internodes. When a period of constant temperature was followed by ramped temperatures or vice versa, the sequence of constant vs ramped environments made little difference in the final growth of the 4 plant types. The data point to high temperature as the major factor for causing dwarfing of the sensitive plant types. Increasing the differential between night and maximum day temperature resulted in short internode. dwarf plants with small leaves similar to orchard-grown dwarf trees.  相似文献   

14.
The objective of this study was to investigate the effect of selenium (Se) supply (0, control; 2.5, 5, 10, or 20 μM) on cucumber (Cucumis sativus L.) cv. Polan F1 plants grown under short-term low temperature stress. About 14–16 day-old seedlings, grown at an optimal temperature (25/20°C; day/night), were exposed to short-term chilling stress with a day/night temperature of 10°C/5°C for 24 h, for a further 24 h at 20°C/15°C, and then transferred to 25/20°C (re-warming) for 7 days. Se did not affect the fresh weight (FW) of plants at a concentration of 2.5–10 μM, but in the presence of 20 μM Se, the biomass of shoots significantly decreased. The contents of chlorophylls and carotenoids witnessed no significant change after Se supplementation. Compared with the control, the Se-treated plants showed an increase of proline content in leaves, once after chilling and again after 7 days of re-warming. However, proline levels were much higher immediately after chilling than after re-warming. The malondialdehyde (MDA) content in the root of plants treated with 2.5–10 μM Se decreased directly after stress. This was in comparison with the plants grown without Se, whereas it increased in roots and leaves of plants exposed to 20 μM Se. Seven days later, the MDA level in the root of plants grown in the presence of Se was still lower than those of plants not treated with Se and generally witnessed no significant change in leaves. Although Se at concentrations of 2.5–10 μM modified the physiological response of cucumber to short-term chilling stress, causing an increase in proline content in leaves and diminishing lipid peroxidation in roots, the resistance of plants to low temperature was not clearly enhanced, as concluded on the basis of FW and photosynthetic pigments accumulation.  相似文献   

15.
Relative electrical conductivity (RC) values and Tally acid levels were measured on apple leaves of different ages exposed to 0 and 20°C. RC values were measured at—3°C and high RC values indicate frost-sensitive tissue. A prolonged period at 0°C gave an increased RC value of the leaves, which indicates damage. At 20°C the RC values were lower in older leaves than in young leaves. The fatty acids level as well as the degree of saturation were different at different ages of the leaves. Young leaves showed a higher fatty acid level in plants held at 20°C than in plants at 0°C. The older leaves maintained the same level after 12 days at 20°C as after 3 days at 20°C. The fatty acid level decreased at 0°C. The linolenic acid level followed the same trend as total fatty acids, indicating that synthesis and degradation of linolenic acid can occur in the same plant depending on the age of the leaf and on the temperature. Cold resistance and linolenic acid levels were correlated in both old and young leaves at 20°C and in older leaves at 0°C. There was no correlation between cold resistance and levels of linotenic acid levels in young leaves at 0°C. Two hiosynthetic pathways for linolenic acid synthesis are discussed.  相似文献   

16.
Successful winter survival of perennial plants, like white clover, is dependent on proper timing of both hardening and dehardening. The purpose of this study was to investigate the regulation of these processes in two cultivars (AberCrest and AberHerald) and two Norwegian ecotypes (Særheim collected at 58°46′N lat. and Bodø at 67°20′N lat.) of white clover (Trifolium repens L.). For hardening and dehardening, plants were exposed to controlled temperature conditions and frost hardiness of stolons was tested by programmed freezing at the rate of 3°C per hour. In addition, stolons were analysed for starch, soluble sugars and soluble amino acids. Cultivars AberCrest and AberHerald, selected for growth at low temperature and winter hardiness in the United Kingdom, were significantly less hardy than the Norwegian populations. After six weeks of hardening (2 weeks at 6°C and 4 weeks at 0.5°C), estimated LT50 values were ?13.8, ?13.0, ?17.8 and ?20.3°C for AberCrest, AberHerald, Saerheim and Bodø, respectively. The rate of dehardening increased with increasing temperature. At low temperature (6°C), the northern ecotype from Bodø was more resistant to dehardening than AberHerald. However, at 18°C the absolute rate of dehardening (°C day?1) was twice as high in Bodø as in AberHerald plants. Stolon elongation during dehardening was initiated at lower temperatures in AberHerald than in plants of the Bodø ecotype. The content of total soluble sugars, sucrose and the amino acids proline and arginine were significantly higher in hardy plants of Bodø than in those of AberHerald. Sucrose levels decreased during dehardening and correlations between sucrose content and LT50 during this process were statistically highly significant for both Bodø and AberHerald. The least hardy populations of white clover were characterized by thick stolons, long internodes and large leaves.  相似文献   

17.
The relationship between from hardiness and growth potential, and their dependence on temperature and photoperiod, was investigated in the one-year-old cambium of balsam fir [Abies balsamea (L.) Mill.]. Six-year-old trees were exposed for 9 weeks to either the natural environment or one of 4 controlled environments in the fall (18 September-18 November), spring (12 April–14 June) and summer (19 July – 19 September). The 4 controlled environments were (1) WS, warm temperature (24/20°C in day/night) + short day (8 h). (2) WL. warm temperature (24/20°C) + long day (8 h + 1 h night break), (3) CS. cold temperature (9/5°C) + short day (8 h) and (4) CL, cold temperature (9/5°C) + long day (8 h + 1 h night break). At the beginning and end of each exposure, cambial activity was measured by recording the number of xylem, cambium and phloem cells, frost hardiness was estimated from the cambium's ability to survive freezing to –40°C, and cambial growth potential was deduced from the duration of the cell cycle and the production of xylem, cambium and phloem cells in cuttings cultured for 4 weeks with exogenous indole-3-acetic acid (IAA) under environmental conditions favourable for cambial activity. In the natural environment, frost hardening began in September and was completed in November, while dehardening occurred when the cambium reactivated. CL, CS, and to a lesser extent WS, promoted hardening in the summer and fall, but did not prevent dehardening in the spring. The cambial growth potential in the natural environment declined from a maximum in April to a low level in June, reached a minimum in September, then increased to a high level in November. This potential was promoted by CL and CS on all dates by WL in the summer and fall. The ratio of xylem to phloem induced by IAA treatment was greatest in June and least in September in cuttings from trees exposed to the natural environment, and was increased by CL and CS in the fall. The cambium in intact branches of trees protected from chilling during the fall and winter resumed cell cycling after less than 9 weeks of dormancy, but produced mostly or only phloem in the subsequent growing period. It is concluded that the frost hardiness of the cambium, the IAA-induced cycling of cambial cells, and IAA-induced xylem to phloem ratio vary independently with season, temperature and photoperiod, and that the periodicity of these processes is regulated endogenously.  相似文献   

18.
Large changes occur in carbohydrate contents of pine (Pinus silvestris L.) and spruce (Picea abies (L.) Karst.) seedlings cold-hardened by photoperiod or by combined photo- and thermo-period. The largest change is in sucrose content, which is almost doubled after six weeks short-day (6/18 h) treatment; and more than doubled (spruce) or more than tripled (pine), when also temperature is lowered (10/5°C). Development of frost hardiness is strongly correlated with the change in carbohydrate contents. At dehardening, the carbohydrate content decreases rapidly, especially in pine, and the raffinose formed during the rest period disappears within 2–4 weeks. Frost hardiness decreases in parallel. The content of soluble carbohydrates may thus play a role in frost hardiness, although it is not the only factor. Bud formation at cold acclimation is not directly correlated with the changes in carbohydrate content and hardiness.  相似文献   

19.
Experiments performed under controlled conditions showed that level of PPFD (photosynthetic photon flux density) during early seedlings growth (preceding cold acclimation at +2 °C) was not the key factor for the development of frost resistance. It did not modify the beneficial effects of prehardening (Rapacz 1997, in this issue) at moderately low (+12 °C) day temperature. Now I have shown that the increase of PPFD may replace to some extent prehardening in the development of frost resistance. It was particularly seen in non-prehardened plants, which had been grown under warm-day (+20 °C) conditions. Prehardening performed under controlled conditions, as well as seedlings growth under natural autumn conditions in the field, allowed to maintain a high net-photosynthesis rate at chilling temperatures. A net-photosynthesis rate during cold acclimation at +2 °C corresponded well with higher frost resistance. As a result, seedlings non subjected to prehardening and grown before cold acclimation under low PPFD acclimated better, if the cold treatment was applied only at nights (+20/2 °C day/night). Only under such conditions the photosynthetic rate was sufficiently high to allow plants to reach a higher level of frost resistance. All other plants acclimated better when they were exposed to the hardening temperature continuously during days and nights (+2/2 °C day/night).  相似文献   

20.
Abstract Water stress at a nonacclimating temperature (18–20°C) increased the cold hardiness of Medicagosativa L. (alfalfa) plants. This increased cold hardiness was retained when the previously water-stressed plants were cold acclimated (2–9°C) in the absence of water stress. Water stress during cold acclimation also increased cold hardiness. Alfalfa was demonstrated to suffer injury, measured as decreased growth following freezing, at sub-lethal temperatures. During cold acclimation the turgor potential (ψ) of watered plants increased, whereas the solute potential and the water content per unit dry weight decreased. The large positive psgrdap of acclimated plants indicates that the decreased water content per unit dry weight is related to an increased proportion of tissue dry matter rather than to tissue dehydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号