首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased expression of 5-lipoxygenase is associated with various neuropathologies and may be related to epigenetic gene regulation. DNA methylation in promoter regions is typically associated with gene silencing. We found that human NT2 cells, which differentiate into neuron-like NT2-N cells, express 5-lipoxygenase and we investigated the relationship between 5-lipoxygenase expression and the methylation state of the 5-lipoxygenase core promoter. We used the demethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor valproate to alter DNA methylation and to induce histone modifications. 5-Lipoxygenase expression and DNA methylation were assayed with RT-PCR and bisulfite genomic sequencing, respectively. Neuronal differentiation of proliferating NT2 precursors decreased 5-lipoxygenase expression. 5-Aza-2'-deoxycytidine increased 5-lipoxygenase mRNA levels only in proliferating cells, whereas valproate increased 5-lipoxygenase mRNA levels in a cell cycle-independent manner. In both precursors and differentiated cells, CpG dinucleotides of the promoter were poorly methylated. In precursors, both 5-aza-2'-deoxycytidine and valproate further reduced the number of methylated CpGs. Moreover, we found evidence for cytosine methylation in CpWpG (W=adenine or thymine) and other asymmetrical sequences; CpWpG methylation was reduced by valproate in NT2-N but not in NT2 cells. This is the first report demonstrating that the dynamics of DNA methylation relates to neural 5-lipoxygenase gene expression.  相似文献   

2.
3.
DNA methylation and histone acetylation are main epigenetic events regulating gene expression, serving as anticancer drug targets. A combination of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine with the histone deacetylase inhibitor depsipeptide synergistically induces apoptosis. To characterize genes involved in this process, we measured expression of 376 apoptosis-related genes with microarrays after treatment with the two inhibitors alone or in combination. The pro-apoptotic BIK (Bcl2-interacting killer) was the only gene synergistically upregulated in all four cancer cell lines tested (A549, PC-3, TK-10, and UO-31). BIK induction was confirmed by RT-PCR and Western blots. Histone acetylation of the BIK promoter region increased with depsipeptide treatment but was not further affected by 5-aza-2'-deoxycytidine. In summary, synergistic upregulation of pro-apoptotic BIK-previously shown to suppress tumor growth-appears to play a critical role in anticancer effects of 5-aza-2'-deoxycytidine plus depsipeptide.  相似文献   

4.
Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.  相似文献   

5.
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we assessed DNA methylation status in the promoter region of FGFR2 gene in gastric cancer cell lines, and indicated that this region was highly methylated, compared with FGFR2-expressing gastric cancer cell lines. Moreover, the restoration of FGFR2 expression by treating methylated cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine strongly suggests that the loss of FGFR2 expression may be due to the aberrant hypermethylation in the promoter region of the FGFR2 gene. Thus, our results suggest that the epigenetic silencing of FGFR2 through DNA methylation in gastric cancer may contribute to tumor progression.  相似文献   

6.
7.
8.
Alterations in gene expression accompany cell-type-specific differentiation. In complex systems where functional differentiation depends on the organization of specific cell types into highly specialized structures (tissue morphogenesis), it is not known how epigenetic mechanisms that control gene expression influence this stepwise differentiation process. We have investigated the effect of DNA methylation, a major epigenetic pathway of gene silencing, on the regulation of mammary acinar differentiation. Our in vitro model of differentiation encompasses human mammary epithelial cells that form polarized and hollow tissue structures (acini) when cultured in the presence of basement membrane components. We found that acinar morphogenesis was accompanied with chromatin remodeling, as shown by alterations in histone 4 acetylation, heterochromatin 1 protein, and histone 3 methylated on lysine 9, and with an increase in expression of MeCP2, a mediator of DNA-methylation-induced gene silencing. DNA hypomethylation induced by treatment with 5-aza-2' deoxycytidine during acinar differentiation essentially prevented the formation of apical tissue polarity. This treatment also induced the expression of CK19, a marker of cells that are in a transitional differentiation stage. These results suggest that DNA methylation is a mechanism by which mammary epithelial differentiation is coordinated both at the tissue and cellular levels.  相似文献   

9.
The insulin-like growth factor-I (IGF-IR) and androgen (AR) receptors are important players in prostate cancer. Functional interactions between the IGF-I and androgen signaling pathways have crucial roles in the progression of prostate cancer from early to advanced stages. DNA methylation is a major epigenetic alteration affecting gene expression. Hypermethylation of tumor suppressor promoters is a frequent event in human cancer, leading to inactivation and repression of specific genes. The aim of the present study was to identify the entire set of methylated genes ("methylome") in a cellular model that replicates prostate cancer progression. The methylation profiles of the P69 (early stage, benign) and M12 (advanced stage, metastatic) prostate cancer cell lines were established by treating cells with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza) followed by DNA microarray analysis. Comparative genome-wide methylation analyses of 5-Aza-treated versus untreated cells identified 297 genes overexpressed in P69 and 191 genes overexpressed in M12 cells. 102 genes were upregulated in both benign and metastatic cell lines. In addition, our analyses identified the PITX2 gene as a master regulator upstream of the AR and IGF-IR genes. The PITX2 promoter was semi-methylated in P69 cells but fully methylated (i. e., silenced) in M12 cells. Epigenetic regulation of PITX2 during the course of the disease may lead to orchestrated control of the AR and IGF signaling pathways. In summary, our results provide new insights into the epigenetic changes associated with progression of prostate cancer from an organ confined, androgen-sensitive disorder to an aggressive, androgen-insensitive disease.  相似文献   

10.
To fully elucidate the functional relationship between DNA methylation and histone hypoacetylation in gene silencing, we have developed an integrated "triple" microarray system that allows us to begin to decipher the influence of epigenetic hierarchies on the regulation of gene expression in cancer cells. Our hypothesis is that in the promoter region of a silenced gene, reversal of two epigenetic factors (i.e., DNA demethylation and/or histone hyperacetylation) is highly correlated with gene reexpression after treatment of the human epithelial ovarian cancer cell line CP70 with the drug combination 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and trichostatin A (TSA), an inhibitor of histone deacetylases. To estimate the posterior probabilities for genes with altered expression, DNA methylation and histone acetylation status measured with a triple-microarray system, we have employed an established empirical Bayes model. Two methods have been proposed to test our hypothesis that DNA demethylation and histone hyperacetylation are highly correlated among those up-regulated genes. One method follows a weighted least squares regression, while the other is derived from a chi-square statistic. The data derived by these approaches, which have been further verified through bootstrap analyses, support the proposed epigenetic correlation (p-values are less than 0.001). Further simulations suggest that even if the constant variance and normality assumptions do not hold, the power of those two tests is robust.  相似文献   

11.
12.
DNA methylation is a chemical modification of DNA involved in the regulation of gene expression by controlling the access to the DNA sequence. It is the most stable epigenetic mark and is widely studied for its role in major biological processes. Aberrant DNA methylation is observed in various pathologies, such as cancer. Therefore, there is a great interest in analyzing subtle changes in DNA methylation induced by biological processes or upon drug treatments. Here, we developed an improved methodology based on flow cytometry to measure variations of DNA methylation level in melanoma and leukemia cells. The accuracy of DNA methylation quantification was validated with LC-ESI mass spectrometry analysis. The new protocol was used to detect small variations of cytosine methylation occurring in individual cells during their cell cycle and those induced by the demethylating agent 5-aza-2''-deoxycytidine (5AzadC). Kinetic experiments confirmed that inheritance of DNA methylation occurs efficiently in S phase and revealed a short delay between DNA replication and completion of cytosine methylation. In addition, this study suggests that the uncoupling of 5AzadC effects on DNA demethylation and cell proliferation might be related to the duration of the DNA replication phase.  相似文献   

13.
DNA methylation is an epigenetic mechanism establishing long-term gene silencing during development and cell commitment, which is maintained in subsequent cell generations. Aberrant DNA methylation is found at gene promoters in most cancers and can lead to silencing of tumor suppressor genes. The DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-CdR) is able to reactivate genes silenced by DNA methylation and has been shown to be a very potent epigenetic drug in several hematological malignancies. In this report, we demonstrate that 5-aza-CdR exhibits high antineoplastic activity against anaplastic large cell lymphoma (ALCL), a rare CD30 positive non-Hodgkin lymphoma of T-cell origin. Low dose treatment of ALCL cell lines and xenografted tumors causes apoptosis and cell cycle arrest in vitro and in vivo. This is also reflected in genome-wide expression analyses, where genes related to apoptosis and cell death are amongst the most affected targets of 5-aza-CdR. Furthermore, we observed demethylation and re-expression of p16INK4A after drug administration and senescence associated β-galactosidase activity. Thus, our data provide evidence that 5-aza-CdR is highly efficient against ALCL and warrants further clinical evaluation for future therapeutic use.  相似文献   

14.
DNA methylation and cancer   总被引:33,自引:0,他引:33  
  相似文献   

15.
16.
17.
18.
19.
DNA methyltransferases have a central role in the complex regulatory network of epigenetic modifications controlling gene expression in mammalian cells. To study the regulation of DNA methylation in living cells, we developed a trapping assay using transiently expressed fluorescent DNA methyltransferase 1 (Dnmt1) fusions and mechanism-based inhibitors 5-azacytidine (5-aza-C) or 5-aza-2'-deoxycytidine (5-aza-dC). These nucleotide analogs are incorporated into the newly synthesized DNA at nuclear replication sites and cause irreversible immobilization, that is, trapping of Dnmt1 fusions at these sites. We measured trapping by either fluorescence bleaching assays or photoactivation of photoactivatable green fluorescent protein fused to Dnmt1 (paGFP-Dnmt1) in mouse and human cells; mutations affecting the catalytic center of Dnmt1 prevented trapping. This trapping assay monitors kinetic properties and activity-dependent immobilization of DNA methyltransferases in their native environment, and makes it possible to directly compare mutations and inhibitors that affect regulation and catalytic activity of DNA methyltransferases in single living cells.  相似文献   

20.
Silencing of the O (6)-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, is involved in carcinogenesis. Recent studies have focused on DNA hypermethylation of the promoter CpG island. However, cases showing silencing with DNA hypomethylation certainly exist, and the mechanism involved is not elucidated. To clarify this mechanism, we examined the dynamics of DNA methylation, histone acetylation, histone methylation, and binding of methyl-CpG binding proteins at the MGMT promoter region using four MGMT negative cell lines with various extents of DNA methylation. Histone H3K9 di-methylation (H3me2K9), not tri-methylation, and MeCP2 binding were commonly seen in all MGMT negative cell lines regardless of DNA methylation status. 5Aza-dC, but not TSA, restored gene expression, accompanied by a decrease in H3me2K9 and MeCP2 binding. In SaOS2 cells with the most hypomethylated CpG island, 5Aza-dC decreased H3me2K9 and MeCP2 binding with no effect on DNA methylation or histone acetylation. H3me2K9 and DNA methylation were restricted to in and around the island, indicating that epigenetic modification at the promoter CpG island is critical. We conclude that H3me2K9 and MeCP2 binding are common and more essential for MGMT silencing than DNA hypermethylation or histone deacetylation. The epigenetic mechanism leading to silent heterochromatin at the promoter CpG island may be the same in different types of cancer irrespective of the extent of DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号