首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forskolin, a plant cardiotonic diterpene, stimulated proteoglycan biosynthesis by chondrocytes in monolayer culture. The quantitative increase in proteoglycans was dependent on the concentration of forskolin, but was relatively independent of the presence of serum. At forskolin concentrations that stimulated proteoglycan synthesis, a significant stimulation of adenylate cyclase and cAMP was also measured. The quantitative increase in proteoglycans was characterized, qualitatively, by an increased deposition of newly synthesized proteoglycan in the cell-associated fraction. An analysis of the most dense proteoglycans (fraction dA1) in the cell-associated fraction showed that more of the proteoglycans eluted in the void volume of a Sepharose CL-2B column, indicating that an increased amount of proteoglycan aggregate was synthesized in forskolin-treated cultures. The proteoglycan monomer dA1D1 secreted into the culture medium of forskolin-stimulated cultures overlapped in hydrodynamic size with that of control cultures, although cultures stimulated with forskolin and phosphodiesterase inhibitors produced even larger proteoglycans. The hydrodynamic size of 35SO4 and 3H-glucosamine-labelled glycosaminoglycans isolated from the dA1D1 fraction of the culture medium was greater in forskolin-treated chondrocytes, especially from those in which phosphodiesterase inhibitors had been added. These results indicated that forskolin, a direct activator of chondrocyte adenylate cyclase mimicked the effects of cAMP analogues on chondrocyte proteoglycan synthesis previously reported. These results implicate activation of adenylate cyclase as a regulatory event in the biosynthesis of cartilage proteoglycans, and more specifically in the production of hydrodynamically larger glycosaminoglycans.  相似文献   

2.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

3.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

4.
Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (i) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (ii) link-stable proteoglycan aggregates are assembled, (ii) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (iv) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.  相似文献   

5.
Previous studies have shown that a synthetic, unglycosylated analogue of the N-terminal peptide from link protein can function as a growth factor and up-regulate proteoglycan biosynthesis in explant cultures of normal human articular cartilage from a wide age range of subjects (McKenna et al., Arthritis Rheum. 41 (1998) 157-162). The present work further shows that link peptide increased proteoglycan synthesis by cartilage cultured in both the presence and absence of serum, suggesting that the mechanism of up-regulation may be different from that of insulin-like growth factors. The proteoglycans synthesised during stimulation with link peptide were of normal hydrodynamic size and the ratio of core protein to glycosaminoglycan side chains and the proportions of the large proteoglycan aggrecan to the small proteoglycans, decorin and biglycan, remained constant. Aggrecan molecules were equally capable of forming aggregates as those from control tissues and the relative proportions of decorin and biglycan were unchanged showing that both were co-ordinately up-regulated. These results confirmed that this novel peptide is a potent stimulator of proteoglycan synthesis by articular cartilage and showed that the newly synthesised proteoglycans were of normal composition.  相似文献   

6.
Osteogenin is a protein isolated from demineralized bovine bone matrix. When implanted in rats, osteogenin induces the differentiation of cartilage and formation of endochondral bone. When added to stage 24 and 25 chick limb bud mesoderm cells in culture, it stimulated synthesis of sulfated proteoglycans by over 10-fold without stimulating cell division. The increase was detected after only 2 days in culture. Morphologically, in the presence of osteogenin, all cells in the culture appeared to form cartilage, rather than the nodules of cartilage surrounded by noncartilage areas in control cultures. The distribution of type II collagen correlated with the morphological differentiation of cartilage. When nonchondrocyte and chondrocyte cell populations were separated, osteogenin stimulated sulfated proteoglycan synthesis in all populations of cells. However, the greatest stimulation (24-fold) was seen in the originally nonchondrocyte population, which apparently still had some potential to form cartilage. In this study, chick limb bud mesoderm cells in vitro responded to osteogenin, a protein derived from adult bovine bone matrix. The cells that were responsive included those that initially did not form cartilage. Osteogenin belongs to a superfamily of proteins, many of which are important in development. It is possible that osteogenin has a role in embryonic cartilage development.  相似文献   

7.
Synthesis of collagen and proteoglycan by rabbit articular chondrocytes and synovial fibroblasts has been studied over a 12-week period in primary monolayer culture. Chondrocytes, but not fibroblasts, accumulate large quantities of proteoglycan over the culture period studied. Radiolabeling studies with [35S]sulfate have shown that the major proteoglycan synthesized by cultured chondrocytes is similar to the proteoglycan of cartilage matrix. Chondrocytes also synthesize a smaller dermatan sulfate proteoglycan, which is apparently the only proteoglycan species produced by synovial fibroblasts. Collagen synthesis was studied by radiolabeling with [3H]proline. Cultured chondrocytes produce mainly Type II collagen, with lesser amounts of Type I, whereas synovial fibroblasts produce Type I collagen and some low molecular weight collagenous species. Therefore, long-term monolayer culture permits the production of extensive chondroid matrix by chondrocytes, but not fibroblasts.  相似文献   

8.
When slices of adult rabbit articular cartilage were incubated in culture medium, the rate of incorporation of [35S]sulphate or [3H]acetate into glycosaminoglycans increased 4-8 fold during the first 5 days of incubation. Similar changes in biosynthetic activity were observed during culture of adult bovine cartilage. The activation of synthesis was not serum-dependent, but appeared to be a result of the depletion of tissue proteoglycan that occurs under these incubation conditions [Sandy, Brown & Lowther (1978) Biochim. Biophys. Acta 543, 536--544]. Thus, although complete activation was observed in serum-free medium, it was not observed if the cartilage was cultured inside dialysis tubing or in medium containing added proteoglycan subunit. The average molecular size of the proteoglycans synthesized by activated tissue was slightly larger than normal, as determined by chromatography on Sepharose CL-2B, and the average molecular size of the glycosaminoglycans synthesized by activated tissue was markedly increased over the normal. The increase in chain size was accompanied by an increase in the proportion of the chains degraded by chondroitinase ABC; these results are consistent with the preferential synthesis by activated chondrocytes of chondroitin sulphate-rich proteoglycans. The increase in glycosaminoglycan chain size was observed whether the chains were formed on endogenous core protein or on exogenous benzyl-beta-D-zyloside. An approximate 4-fold activation in culture of glycosaminoglycan synthesis on protein core was accompanied by a 1.54-fold increase in the rate of incorporation of [3H]serine into the chondroitin sulphate-linkage region of the proteoglycans. A 2.8-fold activation in culture of glycosaminoglycan synthesis on benzyl-beta-D-zyloside was accompanied by a 1.7-fold increase in the rate of incorporation of [3H]benzyl-beta-D-zyloside into glycosaminoglycans. The activation of glycosaminoglycan synthesis was, however, accompanied by no detectable change in the activity of xylosyltransferase (EC 2.4.2.26) in cell-free extracts. These results are discussed in relation to current ideas on the control of proteoglycan synthesis in cartilage.  相似文献   

9.
Turnover of proteoglycans in cultures of bovine articular cartilage   总被引:8,自引:0,他引:8  
Proteoglycans in cultures of adult bovine articular cartilage labeled with [35S]sulfate after 5 days in culture and maintained in medium containing 20% fetal calf X serum had longer half-lives (average 11 days) compared with those of the same tissue maintained in medium alone (average 6 days). The half-lives of proteoglycans in cultures of calf cartilage labeled after 5 days in culture and maintained in medium with serum were considerably longer (average 21 days) compared to adult cartilage. If 0.5 mM cycloheximide was added to the medium of cultures of adult cartilage, or the tissue was maintained at 4 degrees C after labeling, the half-lives of the proteoglycans were greater, 24 and greater than 300 days, respectively. Analyses of the radiolabeled proteoglycans remaining in the matrix of the tissue immediately after labeling the tissue and at various times in culture revealed two main populations of proteoglycans; a large species eluting with Kav of 0.21-0.24 on Sepharose CL-2B, of high bouyant density and able to form aggregates with hyaluronate, and a small species eluting with a Kav of 0.63-0.70 on Sepharose CL-2B, of low buoyant density, containing only chondroitin sulfate chains, and unable to form aggregates with hyaluronate. The larger proteoglycan had shorter half-lives than the smaller proteoglycan; in cartilage maintained with serum, the half-lives were 9.8 and 14.5 days, respectively. Labeling cartilage with both [3H]leucine and [35S]sulfate showed the small proteoglycan to be a separate synthetic product. The size distribution of 35S-labeled proteoglycans lost into the medium was shown to be polydisperse on Sepharose CL-2B, the majority eluting with a Kav of 0.27 to 0.35, of high buoyant density, and unable to aggregate with hyaluronate. The size distribution of glycosaminoglycans from 35S-labeled proteoglycans appearing in the medium did not differ from that associated with labeled proteoglycans remaining in the matrix.  相似文献   

10.
The basal rate of in vitro proteoglycan (PG) synthesis in explants of equine articular cartilage was subject to considerable variation in animals of the same age but was greater in younger than older animals. Synthesis of PGs in explant cultures was stimulated by a synthetic link peptide, identical in sequence to the N-terminus of the link protein (LP) of PG aggregates, in a similar manner to that demonstrated previously for human articular cartilage [Biochem. Soc. Trans. 25 (1997) 427; Arthritis Rheum. 41 (1998) 157]. Stimulation occurred in tissue from animals ranging from 1 to 30 years old but older animals required higher concentrations of peptide to produce a measurable response. Synthesis of PGs increased in a concentration-dependent manner and was paralleled by increases in the ability of aggrecan monomers to form aggregates with hyaluronan (HA). In addition to its effect on synthesis of PGs, link peptide also increased synthesis of both aggrecan and LP mRNA. Cartilage explant and chondrocyte cultures secreted small amounts of biologically active interleukin 1 (IL 1) and secretion of this cytokine was reduced considerably by the addition of link peptide. Reduction in the activity of this catabolic cytokine coupled with the increased synthesis of mRNA for aggrecan and link peptide may be the mechanism by which link peptide exerts its positive effect on the rate of PG synthesis in articular cartilage.  相似文献   

11.
The effects of transforming growth factor-beta (TGF-beta) and serum on proteoglycan synthesis by tissue explants from the fibrocartilaginous region of adult bovine tendon and by cells in culture from this region were assessed. The most characteristic effect of added TGF-beta on both explant tissue and cells in culture was enhanced synthesis of one small proteoglycan-biglycan. Lowered serum concentration diminished incorporation of Na2 35SO4 into proteoglycans. Added TGF-beta (1 ng/ml) stimulated cell proliferation, increased overall proteoglycan synthesis, and increased the length of glycosaminoglycan chains on all secreted proteoglycans. The effect of TGF-beta on cells in culture was highly consistent whereas explants from different animals showed greater variability in the response. It was concluded that TGF-beta did not specifically promote or maintain the cartilaginous nature of this tissue because supplementing medium with TGF-beta did not significantly alter the ratio of large/small proteoglycans synthesized by tissue explants. However, the observation of enhanced biglycan synthesis by TGF-beta suggests that TGF-beta could be involved in differentiation of regions of tendon subjected to compression, because compressed tendon contains both decorin and biglycan small proteoglycans whereas tensional tendon contains primarily decorin. Excess decorin added to cell culture medium did not affect the ability of TGF-beta to enhance synthesis of biglycan.  相似文献   

12.
Pig articular cartilage was maintained in culture for 3 days with and without porcine interleukin 1. The proteoglycans remaining in the cartilage and those released into the medium were analysed by using radioimmunoassays for the hyaluronate-binding region, link protein and keratan sulphate. In interleukin 1-treated cultures after 3 days there was 38% release of total glycosaminoglycans into the medium, 18% release of binding region, 14% release of link protein and 20% release of keratan sulphate epitope, whereas in control cultures the proportions released were much less (16, 9, 10 and 7% respectively). Characterization of the proteoglycans in the media after 1.5 days and 3 days of culture showed that interleukin 1 promoted the release of proteoglycan of large average size and also the release of link protein and of low-Mr binding region which was unattached to proteoglycan. Both the link protein and binding region released were able to bind to exogenously added hyaluronate, whereas the proteoglycan in the medium was not. The proteoglycans extracted from cultured cartilage were similar to those from fresh cartilage: they contained a high proportion of aggregating proteoglycans and some low-Mr binding region. The proportion of this binding region extracted from the interleukin 1-treated cartilage was increased. The presence of interleukin 1 in the cultures therefore appeared to increase the rate of proteolytic degradation of proteoglycan in the matrix and to lead to a more rapid loss of intact binding region, of link protein and of large proteoglycan fragments into the medium.  相似文献   

13.
Rabbit articular chondrocytes were incubated with recombinant transforming-growth-factor-beta 1 (rhTGF-beta 1) and its effect on newly synthesized proteoglycan measured. rhTGF-beta 1 stimulated proteoglycan synthesis at a concentration as low as 5 ng/ml without further increases in radiosulfate incorporation up to 50 ng/ml. The quantitative increase in radiosulfate incorporation in rh-TGF-beta 1-treated chondrocytes was greater in the cell-associated culture compartment than in the medium compartment. rhTGF-beta 1 promoted an increased proteoglycan retention in the cell-associated compartment as evidenced by an increase in the t1/2 of retention from 8 h to 11 h. Specific enhanced synthesis of [35S]-methionine-labeled core proteins was seen in rh-TGF-beta 1-treated chondrocytes. rh-TGF-beta 1 increased the synthesis of the 2 core proteins derived from hydrodynamically large proteoglycans. They possessed apparent molecular weights of greater than 480 kD and 390 kD after 3-5% acrylamide gel electrophoresis. A compartmental analysis revealed that the cell-associated culture compartment contained only the larger of the 2 core proteins derived from large proteoglycans. Two other core proteins with apparent molecular weights 52 kD and 46 kD were also stimulated by rhTGF-beta 1. These results indicated that TGF-beta probably plays a significant role in stimulating proteoglycan core protein synthesis in articular chondrocytes and therefore may be an important growth factor in the restoration of cartilage extracellular matrix after injury.  相似文献   

14.
Large and small proteoglycans are essential components of articular cartilage. How to induce chondrocytes to repair damaged cartilage with normal ratios of matrix components after their loss due to degenerative joint disease has been a major research focus. We have developed immortalized human chondrocyte cell lines for examining the regulation of cartilage-specific matrix gene expression. However, the decreased synthesis and deposition of cartilage matrix associated with a rapid rate of proliferation has presented difficulties for further examination at the protein level. In these studies, proteoglycan synthesis was characterized in two chondrocyte cell lines, T/C-28a2 and tsT/AC62, derived, respectively, from juvenile costal and adult articular cartilage, under culture conditions that either promoted or decreased cell proliferation. Analysis of proteo[36S]glycans by Sepharose CL-4B chromatography and SDS-PAGE showed that the large proteoglycan aggrecan and the small, leucine-rich proteoglycans, decorin and biglycan, were produced under every culture condition studied. In monolayer cultures, a high initial cell density and conditions that promoted proliferation (presence of serum for T/C-28a2 cells or permissive temperature for the temperature-sensitive tsT/AC62 cells) favored cell survival and ratios of proteoglycans expected for differentiated chondrocytes. However, the tsT/AC62 cells produced more proteoglycans at the nonpermissive temperature. Culture of cells suspended in alginate resulted in a significant decrease in proteoglycan production in all culture conditions. While the tsT/AC62 cells continued to produce a larger amount of aggrecan than small proteoglycans, the T/C-28a2 cells lost the ability to produce significant amounts of aggrecan in alginate culture. In addition, our data indicate that immortalized chondrocytes may alter their ability to retain pericellular matrix under changing culture conditions, although the production of the individual matrix components does not change. These findings provide critical information that will assist in the development of a reproducible chondrocyte culture model for the study of regulation of proteoglycan biosynthesis in cartilage.  相似文献   

15.
观察了ConA对培养软骨细胞PG合成代谢的影响。证实ConA能够使培养的软骨细胞高分子硫酸化PG的合成增加3~4倍,其分子量、硫酸化部位和硫酸化程度与对照组相比无明显差异,是具有正常结构的软骨型PG。ConA对低分子型PG的合成未见明显的影响。ConA促进PG合成的作用可由MeMan完全解除,比具有同样效应的激素、生长因子都强,并有明显的凝集素特异性。推测ConA的作用可能与软骨细胞膜或细胞内的分化诱导因子的受体或软骨中存在的ConA软骨细胞分化因子有关。  相似文献   

16.
We have shown that when chondrocytes are isolated by collagenase digestion of hyaline cartilage from growth plate, nasal, and epiphyseal cartilages of bovine fetuses they rapidly elaborate an extracellular matrix in culture. Only growth plate chondrocytes can calcify this matrix as ascertained by incorporation of 45Ca2+, detection of mineral with von Kossa's stain and electron microscopy. There is an extremely close direct correlation between 45Ca2+ incorporation in the first 24 h of culture and the content of the C-propeptide of type II collagen, measured by radioimmunoassay, at the time of isolation and during culture. Moreover, growth plate cells have an increased intracellular content of the C-propeptide per deoxyribonucleic acid and, during culture, per hydroxyproline (as a measure of helical collagen) compared with nasal and epiphyseal chondrocytes. In growth plate chondrocytes 24,25-dihydroxycholecalciferol (24,25-[OH]2D3), but not 1,25-dihydroxycholecalciferol alone, stimulates the net synthesis of the C-propeptide and calcification; proteoglycan net synthesis is unaffected. Together, these metabolites of vitamin D further stimulate C-propeptide net synthesis but do not further increase calcification stimulated by 24,25-(OH)2D3. These observations further demonstrate the close correlation between the C-propeptide of type II collagen and the calcification of cartilage matrix.  相似文献   

17.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

18.
The cartilage matrix deficiency (cmd/cmd) mouse fails to synthesize the core protein of cartilage-characteristic proteoglycan (cartilage PG). Chondrocytes from the cmd/cmd cartilage cultured in vitro produced nodules with greatly reduced extracellular matrix. Immunofluorescence staining revealed that the nodules of mutant cells differed from the normal in lacking cartilage PG and in uneven and reduced deposition of type II collagen. Exogenously added cartilage PG prepared from either normal mouse cartilage or Swarm rat chondrosarcoma to the culture medium was incorporated exclusively into the extracellular matrices of the nodules, with a concurrent correction of the abnormal distribution pattern of type II collagen. The incorporation of cartilage PG into the matrix was disturbed by hyaluronic acid or decasaccharide derived therefrom, suggesting that the incorporation process involves the interaction of added proteoglycan with hyaluronic acid. Both the hyaluronic acid-binding region and the protein-enriched core molecule prepared from rat chondrosarcoma cartilage PG could also be incorporated but, unlike the intact cartilage PG, they were distributed equally in the surrounding zones where fibroblast-like cells predominate. The results indicate that the intact form of cartilage PG is required for specific incorporation into the chondrocyte nodules, and further suggest that cartilage PG plays a regulatory role in the assembly of the matrix macromolecules.  相似文献   

19.
Synthesis of proteoglycans by morphologically and chemically distinct regions of bovine flexor tendon was investigated in explant cultures. Proximal regions of the flexor tendon which experience only tensile forces and have low contents of proteoglycans initially exhibited relatively low rates of proteoglycan synthesis but high rates of collagen synthesis. The predominant proteoglycan produced by all proximal explants was of small hydrodynamic size and appeared similar to that extracted from proximal tissue. In contrast, explants derived from the distal tendon region, which experiences frictional and compressive forces in addition to tensile forces, and has a high content of proteoglycans, showed relatively high initial rates of proteoglycan synthesis and lower rates of collagen synthesis. These distal explants produced primarily large proteoglycans on the first day in culture. Turnover of newly synthesized proteoglycans was not detectable in proximal tissue, and was low in distal tissue. Loss of unlabelled proteoglycan from proximal and distal explants was not detected during the 12 days of culture. These observations suggest that the increase in specific types of proteoglycans in regions of tendon subjected to frictional and compressive forces is the result of elevated synthesis rates in this tissue. Two alterations in proteoglycan synthesis occurred during the 12-day culture period. (1) The rate of proteoglycan synthesis by all explants increased with time in culture. (2) The proportion of small proteoglycans synthesized by distal explants increased from 32% of the total proteoglycan produced on day 1, to 80% of that produced on day 12. Explants from proximal tendon continued to produce only small proteoglycans throughout the 12 days in culture. This switch in proteoglycan phenotype, resulting in decreased synthesis of large proteoglycans by the distal tissue, may be due to a lack of compressive forces on the cultured explants.  相似文献   

20.
The chondrocyte is a specialized cell that synthesizes proteoglycans of a type found only in cartilage and nucleus pulposus. These proteoglycans are distinct in forming multiple aggregates of unique structure in which hyaluronic acid provides a central chain to which many proteoglycan molecules are bound at one end only. Chondrocytes were isolated from adult cartilage and used in suspension culture to test the effect of compounds in the medium on the synthesis of proteoglycans. Hyaluronic acid alone, among a number of compounds extracted from or analogous to those in cartilage, reduced the incorporation of [35S] sulphate into macromolecular material.Oligosaccharides of hyaluronic acid of the size of decasaccharides and above also had this effect but hyaluronic acid already bound to proteoglycan did not. The proportion of total labelled material associated with the cells increased at the expense of that in the medium. Treatment of the cells with trypsin abolished the effect of hyaluronic acid but treatment with chondroitinase did not. It is suggested that hyaluronic acid interacts with proteoglycans at the cell surface by a specific mechanism similar to that involved in proteoglycan aggregation, as a result of which the secretion and synthesis of proteoglycans is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号