首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural changes were studied in the cells undergoing secretory differentiation in zone I of the tubules of the uropygial gland of White Plymouth Rock chickens. A layer of basal cells and four secretory stages are recognized as the cells migrate from the periphery to the lumen of tubules and progressively elaborate a secretion product. Basal cells, containing rough endoplasmic reticulum and free ribosomes, rest on the basement membrane and are the source from which secretory cells arise. Dilated perinuclear cisternae and the proliferation of smooth endoplasmic reticulum in the form of vesicles, invaginated sacs and cusp-shaped cisternae indicate the onset of lipgenesis in stage I cells. The perinuclear cisternae are more dilated and the endoplasmic reticulum is composed on saccules and cisternae in stage II cells. Stage III cells are characterized by concentric lamellae of endoplasmic reticulum surrounding secretory droplets. Dilated cisternae of endoplasmic reticulum and secretory droplets both contain a reticular substance. The perinuclear cisternae of stage III cells have returned to normal dimensions. Large mature lucent secretory droplets, lined with electron-dense material, fill the cytoplasm ostage IV cells which degenerate and release their secretory product into the tubule lumen. Spherical membrane-bound compartments containing a mottled substance of moderate electron density occur in basal cells and all subsequent secretory stages. These mottled bodies are surrounded by saccules of endoplasmic reticulum in stage II cells and are intimately associated with secretory droplets in stage III cells, but there is no evidence that they give rise to secretory droplets and their role in secretory differentiation is unknown.  相似文献   

2.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

3.
The ultrastructure of follicle cells in the ovary at different developmental stages ofBranchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well developed Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secretory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous microfilaments which may play a role in ovulation.  相似文献   

4.
We investigated hamster parathyroid glands of different ages using electron microscopy and found a new cell type in young, adult and senile hamsters. Theses special cells were located in interstitial tissues and invariably contained several lipid droplets within the cytoplasm. The cells showed an elongated spindle with some cell processes. The cells contained small Golgi complexes and moderate cisternae of the granular endoplasmic reticulum. The morphological characteristics of these cells were mostly the same as those of lipid-storing cells in other organs (Yamada and Hirosawa, 1976). After vitamin A administration, the lipid droplets in these cells markedly increased in number and also in volume density. The other morphological features of these cells resembled those of the control animals. We called these cells parathyroid lipid-storing cells. They may incorporate and store vitamin A within the lipid droplets. They can be classified as one of the cellular components in hamster parathyroid gland.  相似文献   

5.
Recent evidence indicates that nemertean epidermis is capable of absorbing certain organic solutes from sea water via mediated transport mechanisms, as well as secreting mucoid substances. Morphological studies suggest that these functions may be restricted to distinct epidermal cell populations.Mucous secretion at the free surface of the epidermis is the result of synthesis and release activities of cells in both the epidermis and dermis (cutis). Secretion of dermal origin passes through the epidermis to the worm's exterior in slender cytoplasmic processes (canaux d'evacuation) in the form of membrane bound vesicles. A single gland cell type, located entirely within the epidermis, releases externally a granular product histochemically identified as largely protein plus some amount of carbohydrate with low periodic acid-Schiff's reactivity. The close juxtaposition of granular endoplasmic reticulum and Golgi apparati to the secretory material is consistent with the composition of this secretory product.Interstitial cells possess microvilli projecting from their apical surface, in addition to cilia. The outer surface of the plasmalemma covering these ciliary projections is unadorned, but microvilli possess a fuzzy coat. At the peripheral ends of the microvilli, the coat is filamentous, while at their base the coat consists of foliate structures. Cationic colloidal iron binding suggest that the filamentous portion of the fuzzy coat contains the greatest proportion of the acidic surface charge. The presence of periodic acid-Schiff's positive material in this region suggests that the fuzzy coat also contains carbohydrate. Lateral boundaries of the interstitial cell lacks obvious junctional specializations; however, the apical 150 nm intracellular space narrows to 40 nm and continues in a tortuous interdigitating path to the base of the adjacent interstitial cells. Where the apex of these cells is broad, the interdigitations are shallow, but the basal half of the interstitial cells have deep complex infoldings. Cytoplasmic organelles other than the nucleus, mitochondria and some granular endoplasmic reticulum, are restricted to the apical half of the cytoplasm. The presence of closely apposed Golgi complexes and smooth endoplasmic reticulum, multivesicular bodies, lysosome-like dense vesicles and coated vesicles suggests that these cells may play a role in intracellular digestion of phagocytized paniculate matter from the external environment. The amplification of the interstitial cell's free surface suggests that these cells are primarily responsible for mediated solute transport across the epidermis.  相似文献   

6.
In guinea pig testes perfused with either glutaraldehyde or osmium tetroxide fixative, the cytoplasm of the interstitial cells contains an exceptionally abundant agranular endoplasmic reticulum. The reticulum in central regions of the cell is a network of interconnected tubules, but in extensive peripheral areas the reticulum is commonly organized into closely packed, flattened cisternae which are fenestrated. Occasional small patches of the granular reticulum occur in the cytoplasm and connect freely with the agranular reticulum. The mitochondria have a dense matrix and contain cristae and some tubules. The Golgi complex is disperse and shows no evidence of secretory material. The cytoplasm also contains lipid droplets. Lipofuscin pigment granules are probably polymorphic residual bodies and contain three components: (1) a dense material which at high magnification shows a 75-A periodicity; (2) a medium-sized lipid droplet; and (3) a cap-like structure. In glutaraldehyde-perfused testis the interstitial cell cytoplasm appears to have the same density from cell to cell, and the agranular reticulum is tubular or cisternal but not in the form of empty vesicles. Thus the "dark" and "light" cells and the vesicular agranular reticulum sometimes encountered in other fixations may be artifacts. Biochemical results from other laboratories, correlated with the present findings, indicate that the membranes of the agranular endoplasmic reticulum in guinea pig interstitial cells are the site of at least two enzymes of androgen biosynthesis, the 17-hydroxylase and the 17-desmolase.  相似文献   

7.
Outer cells from the root cap of Cattleya orchids are characterized by their secretory activity. They are arranged in layers intercalated with layers of secretory product and form a protective mantle over the root tip. The ultrastructure of these cells is similar to those of terrestrial roots (for example Zea mays) in that they are characterized by copious quantities of endoplasmic reticulum and numerous dense-staining prevacuolar bodies. In contrast, most root cap cells of water hyacinth and duckweed are highly vacuolate with no dense-staining prevacuolar bodies. The endoplasmic reticulum is sparse and dictyosomes are small and without secretory activity.  相似文献   

8.
The differentiation of brown adipocyte precursor cells was studied in interscapular brown adipose tissue of adult mice by electron microscopy. Different stages of cell differentiation were characterized in situ. Previous autoradiographic studies suggested that interstitial cells represent the precursor cells of fully differentiated brown adipocytes. The present observations provide morphological evidence for a progressive differentiation of interstitial stem cells into mature brown adipocytes. Four typical stages of development were identified: (1) interstitial cells, (2) protoadipocytes, (3) preadipocytes, and (4) mature brown adipocytes. Interstitial stem cells were small spindle shaped cells, situated between brown adipocytes and characterized by a high nuclear-cytoplasmic ratio, the scarcity of organelles, and the absence of lipid inclusions. Protoadipocytes resembled interstitial cells except that they contained a few tiny lipid droplets in their cytoplasm. Preadipocytes had a larger cytoplasm enclosing many mitochondria and lipid droplets; the smooth endoplasmic reticulum was well developed surrounding the lipid droplets, and was closely associated with the mitochondria. Preadipocytes had the typical structure of growing cells, developing long cytoplasmic processes between and around blood capillaries. Mature brown adipocytes represented the final stage of differentiation. Almost all their cellular volume was occupied by lipid droplets and numerous mitochondria with very dense cristae. Brown adipocytes were also characterized by a tight association with blood capillaries, as expected from metabolically active cells requiring oxygen and substrates. These observations provide direct ultrastructural evidence for a progressive differentiation of interstitial cells into brown adipocytes with a continuum of intermediate cellular types.  相似文献   

9.
Summary The pineal organ of the killifish, Fundulus heteroclitus, was investigated by electron microscopy under experimental conditions; its general and characteristic features are discussed with respect to the photosensory and secretory function. The strongly convoluted pineal epithelium is usually composed of photoreceptor, ganglion and supporting cells. In addition to the well-differentiated photosensory apparatus, the photoreceptor cell contains presumably immature dense-cored vesicles (140–220 nm in diameter) associated with a well-developed granular endoplasmic reticulum in the perinuclear region and the basal process. These dense-cored vesicles appear rather prominent in fish subjected to darkness. The ganglion cell shows the typical features of a nerve cell; granular endoplasmic reticulum, polysomes, mitochondria and Golgi apparatus are scattered in the electron-lucent cytoplasm around the spherical or oval nucleus. The dendrites of these cells divide into smaller branches and form many sensory synapses with the photoreceptor basal processes. Lipid droplets appear exclusively in the supporting cell, which also contains well-developed granular endoplasmic reticulum and Golgi apparatus. Cytoplasmic protrusions filled with compact dense-cored vesicles (90–220 nm in diameter) are found in dark-adapted fish. The origin of these cytoplasmic protrusions, however, remains unresolved. Thus, the pineal organ of the killifish contains two types of dense-cored vesicles which appear predominantly in darkness. The ultrastructural results suggest that the pineal organ of fish functions not only as a photoreceptor but also as a secretory organ.We thank Dr. Grace Pickford for the fishes.  相似文献   

10.
The epithelium lining the digestive tubules of Cardium edule consists of three cell types, namely mature digestive cells, mature secretory cells and immature flagellated cells. Both the secretory and flagellated cells exhibit a pronounced basiphilia and occur in well-defined crypts. The secretory cells are pyramidal in shape and characterized by the possession of a well-developed granular endoplasmic reticulum and Golgi apparatus. Golgi vesicles derived from the latter migrate to the apical region of the cell where they release their contents into the lumen of the tubules. It is possible that the secretion contains enzymes and although it is likely that such enzymes would function primarily in the lumen of the tubules they may also be the source of the weak proteolytic activity which has been recorded in the gastric fluid of many bivalves. The immature flagellated cells are columnar in shape and possess a poorly developed endoplasmic reticulum and numerous free ribosomes. Although no evidence for this was obtained it is suggested that they may serve to replace either or both of the mature cell types. The digestive cells vary from cuboidal to columnar, possess distinctive Golgi elements with characteristic intracisternal membranous elements, and are capable of ingesting exogenous material from the lumen of the tubule. The process of ingestion was examined following feeding experiments with (a) a mixture of iron oxide and colloidal graphite (Aquadag), (b) whole blood from pigeon and (c) ferritin. Individual particles of graphite were enclosed in phagosomes by a process of phagocytosis, while the proteins haemoglobin and ferritin were ingested by a process of pinocytosis; the membrane enclosing the pinocytic vesicles possesses a characteristic outer granular coat. The contents of both the phagocytic and pinocytic vesicles were transferred to larger bodies considered to be primarily phagosomes in the sub-apical regions of the cell. These possess an interconnecting system of membrane-bound channels which ramifies through the apical cytoplasm. Phagolysosomes deeper in the cytoplasm of the cell were identified by the presence of exogenous material and a positive reaction to tests for acid phosphatase activity. They showed changes in appearance which could be put into a series suggestive of the progressive intracellular digestion of the ingested material.  相似文献   

11.
The ultrastructure of follicle cells in the ovary at different developmental stages ofBranchiostoma has been observed in detail with a transmission electron microscope. The results indicate that only one kind of follicle cell exists with structural features related to steroid hormone biosynthesis: (i) oval or round mitochondria with tubules; (ii) smooth surfaced endoplasmic reticulum; (iii) several large lipid droplets in the cytoplasm; (iv) a well developed Golgi complex and tubular rough surfaced endoplasmic reticulum, as can be found in mammalian theca interna cells. In addition, as steroid hormone synthesizing cells, they obviously play an important role in the phagocytosis of relict gametes and cellular debris and may have a nutritive function for the oocytes. They can produce abundant secretory granules in stages III-IV ovaries. In mature ovaries they transform into flat epithelial cells with numerous microfilaments which may play a role in ovulation.  相似文献   

12.
An analysis of differentiating oocytes of the gastropod, Ilyanassa obsoleta, has been made by techniques of light and electron microscopy. Early previtellogenic oocytes are limited by a smooth surfaced oolemma and are associated with each other by maculae adhaerentes. Previtellogenic oocytes are also distinguished by a large nucleus containing randomly dispersed aggregates of chromatin. Within the ooplasm are Golgi complexes, mitochondria and a few cisternae of the rough endoplasmic reticulum. When vitellogenesis begins, the oolemma becomes morphologically specialized by the formation of microvilli. One also notices an increase in the number of organelles and inclusions such as lipid droplets. During vitellogenesis there is a dilation of the saccules of the Golgi complexes and cisternae of the endoplasmic reticulum. Associated with the Golgi complexes are small protein-carbohydrate yolk precursors encompassed by a membrane. These increase in size by fusing with each other. The “mature” yolk body is a membrane-bounded structure with a central striated core and a granular periphery. At maturity a major portion of the ooplasmic constituents such as as mitochondria and lipid droplets occupy the animal region while the bulk of the population of yolk bodies are situated in the vegetal hemisphere. The follicle cells incompletely encompass the developing oocyte. In addition to the regularly occurring organelles, follicle cells are characterized by the presence of large quantities of rough endoplasmic reticulum and Golgi complexes whose saccules are filled with a dense substance. Associated with the Golgi saccules are secretory droplets of varied size. Amongst the differentiating oocytes and follicle cells are Leydig cells. These cells are characterized by a large vacuole containing glycogen. A possible function for the follicle and Leydig cells is discussed.  相似文献   

13.
The vitellogenesis of the trematode Aspidogaster limacoides (Aspidogastrea: Aspidogastridae), a parasite of cyprinid fishes, is described here using transmission electron microscopy. Four different stages of vitellocytes are differentiated: immature vitellocytes, early maturing vitellocytes, advanced maturing vitellocytes and mature vitellocytes. The process follows the same general pattern already described in other free-living neoophorans and parasitic flatworms (i.e. Trematoda, Monogenea and Cestoda): differentiation into mature vitelline cells involves the development of mitochondria, granular endoplasmic reticulum, Golgi complexes, lipid droplets and shell-globules. Mature vitellocytes of A. limacoides are composed of numerous shell-globule clusters, few lipid droplets and glycogen granules. They differ from those of another aspidogastrean Rugogaster hydrolagi in that they possess numerous globules tightly packed and by the presence of only one type of vitelline material. The interstitial tissue of vitelline follicles of A. limacoides contains a peripheral nucleus and long cytoplasmic projections extending between vitelline cells. Since aspidogastreans are considered as an archaic group of parasitic flatworms and thus have a strategic phylogenetic position, future works needs to pay special attention to the ultrastructural and chemical composition of mature vitellocytes within this basal group of trematodes.  相似文献   

14.
Fine structure of the corpuscles of stannius in the toadfish.   总被引:1,自引:0,他引:1  
The micro-anatomy of the corpuscles of Stannius of the toadfish, Opsanus tau, an aglomerular marine teleost, has been studied by light and electron microscopy. The corpuscles are composed of extensively anastomosed cords of epithelial cells which maintain intimate contact with blood capillaries. Most of the epithelial cells contain acidophilic granules which also show a positive reaction with the periodic acid-Schiff technique and aldehyde fuchsin. On the basis of fine structural criteria, three cell types can be recognized. The granular cells contain abundant quantities of granular endoplasmic reticulum, ribosomes, Golgi apparatus with prosecretory granules, coated vesicles, polymorphic mitochondria with lamellar cristae, filaments, microtubules, a cilium, a variety of lysosome-like dense bodies, glycogen particles, lipid droplets, secretory granules and intranuclear lipid-like inclusions. One variety of agranular cell (type I) is characterized by the total absence of secretory granules, but it contains large amounts of granular endoplasmic reticulum and ribosomes, conspicuous profiles of Golgi apparatus, coated vesicles and sometimes an abundance of glycogen. Another variety of agranular cell (type II) has poorly developed cytoplasmic organelles. The perivascular space between the capillary and parenchyma contains connective tissue cells and abundant nerve fibers. The different types of epithelial cells observed in the corpuscles of Stannius of this fish may represent functional stages of the secretory cycle in a single cell type.  相似文献   

15.
The ultrastructure of the pinealocyte in the woodchuck, Marmota monax, was studied during the four seasons of the year. Fall cells have a fairly uniform cytoplasmic density, organelles consistent with synthetic and/or secretory activity and rather extensive pericapillary and intercellular spaces. Many winter pinealocytes are nearly devoid of ribosomes and granular endoplasmic reticulum but contain lipid droplets associated with mitochondria. Pericapillary and intercellular spaces are minimal. Spring glands have the greatest variation in cytoplasmic density with intercellular and pericapillary spaces similar to that seen in fall glands. Cells containing electron dense cytoplasm have Golgi zone associated, secretory granules, free ribosomes, short sections of granular endoplasmic reticulum and dense bodies. Cells with a more electron lucent cytoplasm are similar to the most frequently observed summer pinealocytes which have numerous Golgi zones but few associated secretory granules. Microtubules are prominent in the cytoplasm of these cells, the plasma membranes are smooth and intercellular and pericapillary spaces are minimal. A yearly rhythm or cyclic activity of the pinealocyte is suggested.  相似文献   

16.
Ultrastructural aspects of cat submandibular glands   总被引:3,自引:0,他引:3  
Submandibular glands of five adult female cats were examined by conventional electron microscopic techniques. All gland acini are mucous secreting and each acinus is capped with mucous secreting demilunar cells. Secretory product of demilunar cells is more electron lucent than that of acinar cells. The demilunes show intercellular tissue spaces and intercellular canaliculi whereas similar specializations are absent between acinar cells. Mitochondria and arrays of granular endoplasmic reticulum are more numerous in demilunar cells than in acinar cells. In acinar and demilunar cells secretory droplets first appear as enlarged Golgi saccules which subsequently become closely related to cisternae of the granular endoplasmic reticulum. Filamentous structures, interpreted as mucin molecules, are present in secretory droplets of acinar cells. Intercalated ducts are short, consisting of several junctional cells between acini and striated ducts. Striated ducts are long and tortuous and contain light cells, dark cells and basal cells. Light cells contain numerous membrane bound granules in their distal ends whereas dark cells show electron lucent vesicles in the same position. Basal cells contain a paucity of organelles and membrane plications but exhibit hemidesmosomes along their basal plasma membranes. Myoepithelial cells are abundant in relation to acinar and demilunar cells. Nerve terminals are present in some instances between acinar cells or between acinar and myoepithelial cells.  相似文献   

17.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

18.
Summary What appear to be two types of unicellular glands are found in the integument of the leech, Helobdella stagnalis. Type I cells are characterized by a peripheral, subplasmalemmal sack of rough endoplasmic reticulum and accumulations of secretory product in the form of small membrane bound droplets. Type II cells are characterized by large numbers of closely opposed sacks of rough endoplasmic reticulum and secretory product in the form of large, evidently amorphous accumulations of secretory product.Both cell types attenuate into long, slender processes through which the secretory product passes to the surface of the leech. Each process is characterized by a subplasmalemmal sack of ER which runs the entire length of the process and is continuous, at the proximal end of the process, with sacks of rough ER. Associated with the inner member of the ER membrane pair are microtubules with a diameter of approximately 240 Å.A similar arrangement of a subplasmalemmal ER sack associated with microtubules also is found in secretory processes of the leech, Macrobdella decora.The possible source and functions of these microtubules are discussed.This investigation was supported by Public Health Service grant number GM 723-04 of the National Institutes of Health.The author is greatly indebted to Dr. David B. Slautterback for his advice and encouragement during the course of this investigation.  相似文献   

19.
Summary In order to study the possible functional relationship between the adrenal gland and the subcommissural organ (SCO) in the lizard Lacerta s. sicula Raf., ACTH was administered to some specimens of this species in January when both the adrenal gland and the subcommissural organ have a very low activity. In comparison to untreated controls, the adrenals of animals treated with ACTH showed clear signs of stimulation, presenting enlarged blood vessels, very few lipid droplets, numerous polymorphic mitochondria and abundant tubular smooth endoplasmic reticulum. In addition, a distinct increase in secretory material was observed in the subcommissural cells of specimens treated with ACTH. These cells showed large cisternae of the rough endoplasmic reticulum filled with granular material in the basal region, numerous secretory granules of two types in the apical region and a reduced number of microvilli on the free cell surface. These findings, together with the results of preceding studies, lead the authors to the consideration that steroid hormones might play a role in the regulation of the secretory activity of the SCO.  相似文献   

20.
The ultrastructure of the Sertoli cell of the vervet monkey was studied using both scanning and transmission electron microscopic techniques. SEM micrographs revealed perforated sleeve-like processes which encased mature elongated spermatids which are ready for spermiation. TEM micrographs showed a large Sertoli cell nucleus characterized by many lobes (4–5) and consisting of a homogenous nucleoplasm and a distinctive nucleolus. The nucleus occupies a significant portion of the basal region of the cell. The distribution of chromatin clearly shows high activity of these cells. Lipid droplets and free ribosomes are also found scattered throughout the cytoplasm. Well-developed Golgi apparatus is found in the basal region of the cell. There is phagocytic activity in the Sertoli cells as revealed by the presence of numerous phagosomes. Numerous mitochondria with well-developed tubular cristae are found on the basal side of the nucleus, whereas few mitochondria are located on the apical side of the nucleus. Distinct desmosomes are located between cells. A well-developed smooth endoplasmic reticulum and granular endoplasmic reticulum are frequently found in the cytoplasm of the Sertoli cells. The results of this investigation showed that Sertoli cells of the vervet monkey are almost similar to those of humans and show many similarities with other mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号