首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate cell-size determinations support the prediction that serum starvation and related whole-culture methods cannot synchronize cells. Theoretical considerations predict that whole-culture methods of synchronization cannot synchronize cells. Upon serum starvation, the fraction of cells with a G1-phase amount of DNA increased, but the cell-size distribution is not narrowed. In true synchronization, the cell-size distribution should be narrower than the cell-size distribution of the original culture. In contrast, cells produced by a selective (i.e. non-whole-culture) method have a specific DNA content, a narrow size distribution, and divide synchronously. The general theory leading to the conclusion that whole-culture methods for synchronization do not work implies that one can generalize these serum-starvation results to other cell lines and other whole-culture methods, to conclude that these methods do not synchronize cells.  相似文献   

2.
Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.  相似文献   

3.
Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries. One group of rho1 mutants (rho1A) underwent premature entry into mitosis, leading to the birth of abnormally small cells. In another group of rho1 mutants (rho1B), the mother cells failed to reach an appropriate size before budding, and expression of the G1 cyclin Cln2p began at an earlier phase of the cell cycle. Analyses of mutants defective in Rho1p effector proteins indicate that Skn7p, Fks1p and Mpk1p are involved in cell-size control. Thus, Rho1p and its downstream regulatory pathways are involved in controlling cell size in S. cerevisiae.  相似文献   

4.
The mTOR pathway is the central regulator of cell size. External signals from growth factors and nutrients converge on the mTORC1 multi-protein complex to modulate downstream targets, but how the different inputs are integrated and translated into specific cellular responses is incompletely understood. Deregulation of the mTOR pathway occurs in polycystic kidney disease (PKD), where cilia (filiform sensory organelles) fail to sense urine flow because of inherited mutations in ciliary proteins. We therefore investigated if cilia have a role in mTOR regulation. Here, we show that ablation of cilia in transgenic mice results in enlarged cells when compared with control animals. In vitro analysis demonstrated that bending of the cilia by flow is required for mTOR downregulation and cell-size control. Surprisingly, regulation of cell size by cilia is independent of flow-induced calcium transients, or Akt. However, the tumour-suppressor protein Lkb1 localises in the cilium, and flow results in increased AMPK phosphorylation at the basal body. Conversely, knockdown of Lkb1 prevents normal cell-size regulation under flow conditions. Our results demonstrate that the cilium regulates mTOR signalling and cell size, and identify the cilium-basal body compartment as a spatially restricted activation site for Lkb1 signalling.  相似文献   

5.
Increase in air or oxygen pressure in microbial cell cultures can cause oxidative stress and consequently affect cell physiology and morphology. The behaviour of Saccharomyces cerevisiae grown under hyperbaric atmospheres of air and pure oxygen was studied. A limit of 1.0 MPa for the air pressure increase (i.e. 0.21 MPa of oxygen partial pressure) in a fed-batch culture of S. cerevisiae was established. Values of 1.5 MPa air pressure and 0.32 MPa pure oxygen pressure strongly inhibited the metabolic activity and the viability of the cells. Also, morphological changes were observed, especially cell-size distribution and the genealogical age profile. Pressure caused cell compression and an increase in number of aged cells. These effects were attributed to oxygen toxicity since similar results were obtained using air or oxygen, if oxygen partial pressure was equal to or higher than 0.32 MPa. The activity of the antioxidant enzymes, catalase and superoxide dismutase (SOD) (cytosolic and mitochondrial isoformes) indicated that the enzymes have different roles in oxidative stress cell protection, depending on other factors that affect the cell physiological state.  相似文献   

6.
An inverse relationship between organism size and rearing temperature is widely observed in ectotherms ('the temperature-size rule', TSR). This has rarely been quantified for related taxa, and its applicability to protists also required testing. Here, we quantify the relationship between temperature and mean cell volume within the protists by a meta-analysis of published data covering marine, brackish water and freshwater autotrophs and heterotrophs. In each of 44 datasets, a linear relationship between temperature and size could not be rejected, and a negative trend was found in 32 cases (20 gave significant negative regressions, p < 0.05). By combining 65 datasets, we revealed, for each 1 degrees C increase, a cell-size reduction of 2.5% (95% CI of 1.7-3.3%) of the volume observed at 15 degrees C. The value did not differ across taxa (amoebae, ciliates, diatoms, dinoflagellates, flagellates), habitats, modes of nutrition or combinations of these. The data are consistent with two hypotheses that are capable of explaining the TSR in ectotherms generally: (i) resource, especially respiratory gas, limitation; and (ii) fitness gains from dividing earlier as population growth increases. Using the above relationship we show how changes in cell numbers with temperature can be estimated from changes in biomass and vice versa; ignoring this relationship would produce a systematic error.  相似文献   

7.
Cotton (Gossypium hirsutum L.) is an important crop that is used to produce both natural textile fiber and cottonseed oil. Cotton fiber is a unicellular trichome, whose length is critical to fiber quality and yield but difficult to modify. FCA was originally identified based on flowering time control in Arabidopsis. The function of the second RNA recognition motif (RRM) domain of Oryza sativa FCA in rice cell-size regulation has been previously reported, showing it to be highly conserved across dicotyledonous and monocotyledonous plants. The present study showed that the second RRM domain of Brassica napus FCA functioned in Gossypium hirsutum, leading to enlargement of multiple cell types, such as pollen, cotyledon petiole, and cotton fiber. In the resulting transgenic cotton, fiber length increased by ~10% and fiber yield per plant showed a dramatic increase, ranging from 35 to 66% greater than controls. Thus, this RRM domain may be a cell-size regulator and have great economic value in the cotton industry.  相似文献   

8.

Background

Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Thiazolidinediones are insulin-sensitizing peroxisome proliferator-activated receptor gamma agonists that are known to affect the morphology of adipose tissue.

Methodology

In this study, adipose cell-size probability distributions were measured in six Zucker fa/fa rats over a period of 24 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animals. Three of the rats were gavaged daily with rosiglitazone, a thiazolidinedione, and three served as controls. These longitudinal probability distributions were analyzed to obtain the rate of increase in cell-size diameter in rosiglitazone-treated animals, and the hyperplasia induced by treatment quantitatively.

Conclusions

We found that treatment leads to hypertrophy that leads to an approximately linear rate of cell diameter increase (2 m/day), and that the hyperplasia evident in treated animals occurs largely within the first eight days of treatment. The availability of additional lipid storage due to treatment may alleviate lipotoxicity and thereby promote insulin sensitivity. The hypothesis that a TZD regimen involving repeated treatments of limited duration may suffice for improvements in insulin sensitivity merits further investigation.  相似文献   

9.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

10.
11.
It has been predicted that nocodazole-inhibited cells are not synchronized because nocodazole-arrested cells with a G2-phase amount of DNA would not have a narrow cell-size range reflecting the cell size of some specific, presumably G2-phase, cell-cycle age. Size measurements of nocodazole-inhibited cells now fully confirm this prediction. Further, release from nocodazole inhibition does not produce cells that move through the cell cycle mimicking the passage of normal unperturbed cells through the cell cycle. Nocodazole, an archetypal whole-culture synchronization method, can inhibit growth to produce cells with a G2-phase amount of DNA, but such cells are not synchronized. Cells produced by a selective (i.e., non-whole-culture) method not only have a specific DNA content, but also have a narrow size distribution. The current view of cell-cycle control that is based on methods that are not suitable for cell-cycle analysis must therefore be reconsidered when results are based on whole-culture synchronization.This work was supported by the National Science Foundation (grant MCB–0323346) and (in part) by the National Institutes of Health (University of Michigan’s Cancer Center, support grant 5 P30 CA46592). G.I., M.T., and P. B. are associated with the Undergraduate Research Opportunity Program of the University of Michigan, which also supported this research.  相似文献   

12.
Parker J 《Current biology : CB》2006,16(20):2058-2065
Insect bodies are subdivided into anterior (A) and posterior (P) compartments: cohesive fields of distinct cell lineage and cell affinity . Like organs in many animal species, compartments can develop to normal sizes despite considerable variation in cell division . This implies that overall compartment dimensions are subject to genetic control, but the mechanisms are unknown. Here, studying Drosophila's embryonic segments, I show that P compartment dimensions depend on epidermal growth factor receptor (EGFR) signaling. I suggest the primary activating ligand is Spitz, emanating from neighboring A compartment cells. Spi/EGFR activity stimulates P compartment cell enlargement and survival, but evidence is presented that Spitz is secreted in limited amounts, so that increasing the number of cells within the P compartment causes the per-cell Spitz level to drop. This leads to compensatory apoptosis and cell-size reductions that preserve compartment dimensions. Conversely, I propose that lowering P compartment cell numbers enhances per-cell Spitz availability; this increases cell survival and cell size, again safeguarding compartment size. The results argue that the gauging of P compartment size is due, at least in part, to cells surviving and growing according to Spi availability. These data offer mechanistic insight into how diffusible molecules control organ size.  相似文献   

13.
Increased cell number and cell length both contribute to shade induced elongation of petioles which enables stoloniferous plants to place their leaf lamina higher up in the canopy. Although petiole elongation is assumed to be beneficial, it may also imply costs in terms of decreased biomechanical stability. We test the hypothesis that shade induced elongation changes the biomechanical properties of petioles and that the underlying mechanisms, cell division and cell elongation, differentially affect biomechanical properties. This was done by subjecting 14 genotypes differing in the relative contribution of cell size and cell number to shade induced elongation responses to high light conditions and to simulated canopy shade. Developmental traits (cell size and cell number), morphological traits characterizing the petioles, as well as biomechanical characteristics were measured. Our results show that, comparable to stems of non-clonal plants, the rigidity of a petiole’s tissue (the Young’s modulus) increases, leading to increased flexural stiffness of petioles subjected to shading. Increased flexural stiffness proved to be associated with increased performance under shaded conditions. Our results also indicate that cell number affected the material properties and the flexural stiffness of petioles. However, the degree and pattern of the effects differed between light environments. Shade induced increase in cell number translated into shade induced increase of Young’s modulus and flexural stiffness. Genotypes producing relatively larger cells under shaded conditions experienced a decrease in tissue rigidity. In concert our results indicate that the pattern of selection on flexural stiffness, and thereby also on shade induced changes of cell number and cell size differs among light environments. An erratum to this article can be found at  相似文献   

14.
S K Das 《Mutation research》1988,207(3-4):171-177
.3-1.0 microM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1-2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 microM araC-treated cells. The cell cycle activated by caffeine in 0.3 microM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 microM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with less than G1 DNA content.  相似文献   

15.
《Mutation Research Letters》1988,207(3-4):171-177
0.3–1.0 σmM araC (cytosine arabinoside) treatment of V79 cells produced inhibition of multiplication of cells which was accompanied by a large increase of cell size. In presence of 1–2 mM caffeine the inhibition of cell proliferation due to araC treatment was substantially reduced and cell-size increase was prevented; caffeine did not influence the uptake of araC by V79 cells. Flow microfluorometric analysis showed that caffeine induced a wave of cell cycle progression in 0.3 μM araC-treated cells. The cell cycle activated by caffeine in 0.3 μM araC-treated cells was largely well behaved; this was indicated by the fact that (1) prior to cell division cells achieved a tetraploid DNA content and (2) following cell division they had diploid DNA content as a result of which DNA homeostasis was maintained. At 1.0 μM araC concentration, however, extreme micronucleation was observed which gave rise to a substantial fraction of micronuclei with < G1 DNA content.  相似文献   

16.
The purpose of this study is to determine the flowering requirements of Polymnia canadensis and how they correspond to the occurrence of winter annuals, biennials, and short-lived monocarpic perennials in this species. Polymnia canadensis has a vernalization requirement for flowering, and even very small plants (i.e., those with one pair of leaves) can be vernalized. Vernalized plants can flower under both long- and short days. However, to flower plants must attain a minimum postvernalization size. Plants of this primarily monocarpic species that do not die after they flower once require another period of vernalization to flower a second time (i.e., to be dicarpic). Vernalized plants exposed to high temperatures can be devernalized; these must be re-vernalized in order to flower.  相似文献   

17.
EBP1 regulates organ size through cell growth and proliferation in plants   总被引:2,自引:0,他引:2  
Plant organ size shows remarkable uniformity within species indicating strong endogenous control. We have identified a plant growth regulatory gene, functionally and structurally homologous to human EBP1. Plant EBP1 levels are tightly regulated; gene expression is highest in developing organs and correlates with genes involved in ribosome biogenesis and function. EBP1 protein is stabilised by auxin. Elevating or decreasing EBP1 levels in transgenic plants results in a dose-dependent increase or reduction in organ growth, respectively. During early stages of organ development, EBP1 promotes cell proliferation, influences cell-size threshold for division and shortens the period of meristematic activity. In postmitotic cells, it enhances cell expansion. EBP1 is required for expression of cell cycle genes; CyclinD3;1, ribonucleotide reductase 2 and the cyclin-dependent kinase B1;1. The regulation of these genes by EBP1 is dose and auxin dependent and might rely on the effect of EBP1 to reduce RBR1 protein level. We argue that EBP1 is a conserved, dose-dependent regulator of cell growth that is connected to meristematic competence and cell proliferation via regulation of RBR1 level.  相似文献   

18.
19.
Phytochrome B-deficient plants exhibit increased gibberellin (GA) levels or responsiveness, which may contribute to their elongated growth and reduced chlorophyll levels. We have investigated the effects of applications of gibberellic acid and an inhibitor of gibberellin biosynthesis, ancymidol, on wild-type and phytochrome B-antisense potato (Solanum tuberosum ssp. andigena) plants. The results showed that some phenotypes of the phytochrome B-antisense plants, i.e. increased stem length and reduced chlorophyll, can be mimicked by treating wild-type plants with gibberellic acid. However, another phenotype, i.e. tuberisation response in long days, is mimicked by application of a GA biosynthesis inhibitor ancymidol, thus appearing to be the result of a reduction in the gibberellin levels. A simple increase in gibberellin levels or sensitivity is, therefore, not sufficient to explain the phenotype of the antisense plants.  相似文献   

20.
Rocks: multifunctional kinases in cell behaviour   总被引:1,自引:0,他引:1  
ROCKs, or Rho kinases, are serine/threonine kinases that are involved in many aspects of cell motility, from smooth-muscle contraction to cell migration and neurite outgrowth. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and pathological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号