首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequisite for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10−3 M and for peroxidatic activity of catalase at 10−1 M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10−3 M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10−1 M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2–0.5 μ) particles similar to small peroxisomes described in various other cell-types. This work was presented in part at the twenty-fifth Annual Meeting of the Histochemical Society, April 5–6, 1974. Atlantic City, N.J., J. Histochem. Cytochem.22, 288 (1974).  相似文献   

2.
The influence of various parameters of fixation and incubation upon the oxidation of DAB by catalase have been analyzed. Crystalline beef liver catalase was fixed with different concentrations of glutaraldehyde and peroxidatic activity was determined spectrophotometrically using DAB as hydrogen donor. Although aldehyde fixation appeared to be important in elicitation of the peroxidatic activity of catalase, the final pigment production after 60 min incubation was optimal with the lowest concentration of glutaraldehyde (1%), after the shortest fixation period (30 min), and at the lowest temperature (5 degrees C) tested. Similarly cytochemical studies with rat kidney sections incubated for 10 min confirmed that the staining of peroxisomes in proximal tubules was strongest after the "mildest" fixation conditions. The pH and the temperature of incubation were closely interrelated, so that at room temperature (25 degrees C) the maximal pigment production was obtained at pH 10.5, but incubation at 45 degrees C gave the strongest staining at pH 8.5. The production of pigment increased with higher DAB concentrations which required larger amounts of H2O2 in the incubation medium. Cytochemical studies on renal peroxisomes were in agreement with these biochemical findings. The observations indicate that there are several options for the localization of catalase depending on the fixation and incubation conditions. Hence, these conditions should be selected according to the tissue and the purpose of the study. Examples for such selective applications are presented.  相似文献   

3.
In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specificity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15-30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylte buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) buffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

4.
Summary The influence of various parameters of fixation and incubation upon the oxidation of DAB by catalase have been analyzed. Crystalline beef liver catalase was fixed with different concentrations of glutaraldehyde and peroxidatic activity was determined spectrophotometrically using DAB as hydrogen donor. Although aldehyde fixation appeared to be important in elicitation of the peroxidatic activity of catalase, the final pigment production after 60 min incubation was optimal with the lowest concentration of glutaraldehyde (1%), after the shortest fixation period (30 min), and at the lowest temperature (5° C) tested. Similarly cytochemical studies with rat kidney sections incubated for 10 min confirmed that the staining of peroxisomes in proximal tubules was strongest after the mildest fixation conditions. The pH and the temperature of incubation were closely interrelated, so that at room temperature (25° C) the maximal pigment production was obtained at pH 10.5 but incubation at 45° C gave the strongest staining at pH 8.5. The production of pigment increased with higher DAB concentrations which required larger amounts of H2O2 in the incubation medium. Cytochemical studies on renal peroxisomes were in agreement with these biochemical findings. The observations indicate that there are several options for the localization of catalase depending on the fixation and incubation conditions. Hence, these conditions should be selected according to the tissue and the purpose of the study. Examples for such selective applications are presented.  相似文献   

5.
Summary In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specifity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15–30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylate buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) butffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

6.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland  相似文献   

7.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
The DAB reactivity of the midintestine of the earthworm, consisting of epithelial layer, muscle layer, and chloragogen tissue, was examined electron microscopically. Besides the mitochondrial membranes of the examined cell types and the hemoglobin content of the blood vessels and chloragogen cells, a considerable DAB reactivity was found in the whole cytosol of the chloragocytes. The DAB reaction of the cytosol was more intensive when incubation medium for catalase, less intensive when incubation medium for peroxidase, was used and did not occur when H2O2 was omitted. Cytosol of the chloragogen cells was isolated and preliminary assay of catalase and peroxidase activities was made. Cytosol samples showed moderate peroxidase activity, but catalase activity measured by the decomposition of hydrogen peroxide showed a very high rate. Catalase and peroxidase activities of the cytosol were heat-sensitive and might have been inhibited by azide and cyanide, respectively. Results prove the assumption that the intensive DAB reactivity of the chloragocyte cytosol is caused by its extraperoxisomal catalase content.  相似文献   

9.
The localization of peroxidase activity in methanol-grown cells of the yeast Hansenula polymorphia has been studied by a method based on cytochemical staining with diaminobenzidine (DAB). The oxidation product of DAB occurred in microbodies, which characteristically develop growth on or methanol, and in the intracristate space of the mitochondria. The staining of microbodies was H2O2 dependent, appeared to be optimal at pH 10.5, diminished below pH 10 and was inhibited by 20 mM 3-amino 1,2,4 triazole (AT). In contrast to these observations, the reaction in the mitochondria was not H2O2 dependent and not notably affected by differences in pH in the range of 8.5 to 10.5. Microbodies and mitochondria were also stained when H2O2 was replaced by methanol. Appropriate control experiments indicated that in this case methanol oxidase generated the H2O2 for the peroxidative conversion of DAB by catalase. These results suggest that catalase is located in the microbodies of methanol-grown yeasts. A model for a possible physiological function of the microbodies during growth on methanol is put forward.  相似文献   

10.
The influence on diaminobenzidine staining of four variables: prefixation in aldehyde, temperature and pH of incubation, and H2O2 concentration, was investigated in catalase-, as well as in peroxydase-containing material. Catalase from five different sources and five types of peroxidase were examined. It is concluded: (a) when cells are incubated without prior fixation, in a DAB medium at room temperature and pH 7.3 with 0.003% H2O2, peroxidases produce a visible cytochemical stain, while catalases do not; (b) the cytochemical reaction elicited by catalases is stimulated by prior aldehyde fixation in specified conditions, and incubation at 45 degrees C and pH 9.7 with 0.06% H2O2; (c) under the latter circumstances several peroxidases also stain. Ultrastructural preservation is satisfactory in tissues incubated prior to fixation.  相似文献   

11.
Catalase-peroxidases (KatGs) use a peroxidase scaffold to support robust catalase activity, an ability no other member of its superfamily possesses. Because catalase turnover requires H(2)O(2) oxidation, whereas peroxidase turnover requires oxidation of an exogenous electron donor, it has been anticipated that the latter should inhibit catalase activity. To the contrary, we report peroxidatic electron donors stimulated catalase activity up to 14-fold, particularly under conditions favorable to peroxidase activity (i.e., acidic pH and low H(2)O(2) concentrations). We observed a "low-" and "high-K(M)" component for catalase activity at pH 5.0. Electron donors increased the apparent k(cat) for the "low-K(M)" component. During stimulated catalase activity, less than 0.008 equivalents of oxidized donor accumulated for every H(2)O(2) consumed. Several classical peroxidatic electron donors were effective stimulators of catalase activity, but pyrogallol and ascorbate showed little effect. Stopped-flow evaluation showed that a Fe(III)-O(2)(-)-like intermediate dominated during donor-stimulated catalatic turnover, and this intermediate converted directly to the ferric state upon depletion of H(2)O(2). In this respect, the Fe(III)-O(2)(-) -like species was more prominent and persistent than in the absence of the donor. These results point toward a much more central role for peroxidase substrates in the unusual catalase mechanism of KatG.  相似文献   

12.
Ultrastructural localization of peroxidatic activity was investigated in the chytrid Entophlyctis variabilis with the 3,3-diaminobenzidine (DAB) cytochemical prodedure. The subcellular distribution of reaction product varied with changes in pH of the DAB medium and with the developmental stage of the fungus. Incubations in the DAB reaction medium at pH 9.2 produced an electron dense reaction product within single membrane bounded organelles which resembled microbodies but which varied in shapes from elongate to oval. At this pH the cell wall also stained darkly. When the pH of the DAB medium was lowered to pH 8.2 or 7.0, DAB oxidation product was localized within mitochondrial cristae as well as in microbodies and zoosporangial walls. As soon as zoospores were completely cleaved out of the zoosporangial cytoplasm, endoplasmic reticulum (ER) also stained. When the wall appeared around the encysted zoospore, ER staining was no longer found. The influence of the catalase inhibitor, aminotriazole, and the inhibitors of heme enzymes, sodium azide and sodium cyanide, on the staining patterns within cells incubated in the DAB media indicates that microbody staining is due to both catalase and peroxidase, mitochondrial staining is due to cytochrome c, and ER staining is due to peroxidase.Abbreviations DAB 3,3-diaminobenzidine-HCl - ER endoplasmic reticulum  相似文献   

13.
The bacterium Klebsiella pneumoniae synthesizes three different types of catalase: a catalase-peroxidase, a typical catalase and an atypical catalase, designated KpCP, KpT and KpA, respectively (Goldberg, I. and Hochman, A. (1989) Arch. Biochem. Biophys. 268, 124-128). KpCP, but not the other two enzymes, in addition to the catalatic activity, catalyzes peroxidatic activities with artificial electron donors, as well as with NADH and NADPH. Both KpCP and KpT are tetramers, with heme IX as a prosthetic group, and they show a typical high-spin absorption spectrum which is converted to low-spin when a cyanide complex is formed. The addition of dithionite to KpCP causes a shift in the absorption maxima typical of ferrous heme IX. KpCP has a pH optimum of 6.3 for the catalatic activity and 5.2-5.7 for the peroxidatic activity, and relatively low 'Km' values: 6.5 mM and 0.65 H2O2 for the catalatic and peroxidatic activities, respectively. The activity of the catalase-peroxidase is inhibited by azide and cyanide, but not by 3-amino-1,2,4-triazole. KpT has wide pH optimum: 5-10.5 and a 'Km' of 50 mM H2O2, it is inhibited by incubation with 3-amino-1,2,4-triazole and by the acidic forms of cyanide and azide. A significant distinction between the typical catalase and the catalase-peroxidase is the stability of their proteins: KpT is more stable than KpCP to H2O2, temperature, pH and urea.  相似文献   

14.
The distribution of endogenous peroxidase activity in the lacrimal gland of the rat during postnatal development was investigated by electron microscope cytochemistry Peroxidase activity is first found 6 hr after birth in only a few acinar cells At this stage, reaction product fills only localized segments of the scant rough endoplasmic reticulum and of the perinuclear cisternae. Peroxidase activity thus develops asynchronously in a given cell as well as in the secretory cell population as a whole 2 days after birth, all cisternae of the rough endoplasmic reticulum of a peroxidase-positive cell contain reaction product, but the majority of the acinar cells is still negative During the next days, the number of peroxidase-positive cells and the amount of the rough endoplasmic reticulum increase rapidly. By 15 days postparturition, all secretory cells are peroxidase-positive. Reaction product is then found in all cisternae of the rough endoplasmic reticulum including the perinuclear cisternae, in smooth surface vesicles located mainly between the rough endoplasmic reticulum and the Golgi stacks, in condensing vacuoles, and in all secretory granules The Golgi cisternae rarely contain reaction product In total homogenates and in fractions of glandular tissue of adult rats, peroxidatic and catalatic activities are demonstrable. The microsomal fractions and the postmicrosomal supernatants were used to separate peroxidase from catalase by precipitation with ammonium sulfate, and the following parameters were determined: substrate (H2O2-) optimum (∼ 2.0 x 10-4 M), pH-optimum (pH 6 5), temperature-optimum (42°C), and the absorption maximum (415 nm before and 425 nm after addition of H2O2) The same parameters were obtained from lacrimal fluid peroxidase. Both peroxidase from lacrimal gland and that from lacrimal fluid are almost completely inhibited by 10-3 M aminotriazole and are possibly identical enzymes. Peroxidase is secreted into lacrimal fluid, which does not contain catalase.  相似文献   

15.
Analysis of the peroxidatic mode of action of catalase   总被引:4,自引:0,他引:4  
Catalase is an enzyme which can function either in the catabolism of hydrogen peroxide or in the peroxidatic oxidation of small substrates such as ethanol, methanol, or elemental mercury (Hg0). It has been reported that native catalase can peroxidatically oxidize larger organic molecules (e.g. L-dopa) and that catalase maintained at alkaline pH for various lengths of time demonstrates an increase in peroxidase activity using guaiacol as substrate. We have shown, by using two distinct methods of H2O2 introduction for measuring peroxidase activity, that native catalase shows no peroxidatic activity toward these larger organic molecules. We have also shown, through the use of these peroxidase assays and by enzyme absorption spectra, that the peroxidase activity attributed to catalase maintained at alkaline pH is a catalytic but not enzymatic activity associated with a hematin group attached to a denatured catalase monomer. Possible mechanisms for the catalytic and peroxidatic modes of action of catalase involving hydride-ion transfer are discussed.  相似文献   

16.
Summary The DAB reactivity of the midintestine of the earthworm, consisting of epithelial layer, muscle layer, and chloragogen tissue, was examined electron microscopically. Besides the mitochondrial membranes of the examined cell types and the hemoglobin content of the blood vessels and chloragogen cells, a considerable DAB reactivity was found in the whole cytosol of the chloragocytes. The DAB reaction of the cytosol was more intensive when incubation medium for catalase, less intensive when incubation medium for peroxidase, was used and did not occur when H2O2 was omitted.Cytosol of the chloragogen cells was isolated and preliminary assay of catalase and peroxidase activities was made. Cytosol samples showed moderate peroxidase activity, but catalase activity measured by the decomposition of hydrogen peroxide showed a very high rate. Catalase and peroxidase activities of the cytosol were heat-sensitive and might have been inhibited by azide and cyanide, respectively. Results prove the assumption that the intensive DAB reactivity of the chloragocyte cytosol is caused by its extraperoxisomal catalase content.  相似文献   

17.
The cytochemical demonstration of marker enzymes for subcellular organelles permits light microscopic analysis of their structure and function in normal and diseased tissues. Currently available staining procedures for the peroxidatic activity of catalase in peroxisomes of plant and animal cells yield weak and inconsistent light microscopic staining when applied to human tissues. We have developed a simple and sensitive high temperature procedure that clearly and reproducibly stains these abundant, but poorly understood, organelles in biopsy specimens of human liver and kidney. This method utilizes formaldehyde fixation, a modified diaminobenzidine (DAB) medium, incubation at 45 degrees C and postosmication for both light and electron microscopy.  相似文献   

18.
Summary The localization of endogenous peroxidase was studied in the glandula orbitalis (lacrimalis) externa of the rat by the method of Graham and Karnovsky (1966). Reaction product is visible in all cisternae of the rough endoplasmic reticulum including the perinuclear cisternae, in condensing vacuoles, and in all secretion granules. The Golgi cisternae seldom are peroxidase positive. Intercalated duct cells rarely contain reaction product in a few scattered cisternae of the rough endoplasmic reticulum and in secretion granules.After the injection of beef liver catalase reaction product is found in the capillary lumen. Both the injected catalase and the endogenous peroxidase are completely inhibited by 10–2M aminotriazole, while the pseudoperoxidatic activity within the erythrocytes persists. After injection of horseradish-peroxidase reaction product is visible within the capillary lumen and also in the intercellular spaces between lacrimal gland cells. 10–2M aminotriazole completely inhibits the endogenous peroxidase while the exogenous horseradish-peroxidase remains unaffected. The inhibitory effect of aminotriazole is not specific for catalase since lacrimal gland peroxidase is also inhibited.  相似文献   

19.
Summary The antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured in the rete mirabile and gas gland epithelium area of the swim bladder of the toadfish Opsanus tau. When the concentration of enzyme in the swim bladder was compared with the concentration in other organs (kidney, heart, gills) of the same fish, the swim bladder was found to have the highest concentration of superoxide dismutase but relatively low levels of glutathione peroxidase and catalase.Cytochemical assay for the peroxidatic activity of catalase confirmed that virtually no catalase is present in epithelial cells of the gas gland. A similar assay for peroxidase revealed a cyanide-sensitive peroxidase in the multilamellar bodies of these cells. Most of the catalase and peroxidase in the rete mirabile appears to be confined to the granules of neutrophils and the cytoplasm of erythrocytes. Enzyme activity in the neutrophils is not inhibited by 10-1 M KCN. Cyanide does appear to inhibit the peroxidase activity in erythrocytes but has little effect on catalase in these cells.Supported by grant No. HL23338 from the National Institutes of Health  相似文献   

20.
Summary We have tried to improve existing methods for demonstration of platelet peroxidase (PPO) in human platelets and megakaryocytes by introducing a fixation in 0.1% glutaraldehyde prior to incubation in the DAB medium. This prefixation with low concentration of glutaraldehyde preserves excellent morphological detail and does not inhibit PPO activity. All 23 platelet-rich plasma samples show PPO reaction product in the dense tubular system after incubation in DAB medium with 0.003% H2O2. When 0.01% H2O2 is used in excessive DAB medium, PPO activity can also be demonstrated in platelets and megakaryocytes of bone-marrow cell suspensions. This method can be used for the identification of megakaryoblasts in acute non-lymphocytic leukemia, myelodysplastic syndromes and in blastic crisis of chronic myeloid leukemia. PPO cytochemistry can be combined with postfixation in a OsO4-ruthenium red mixture. This method reveals -granules, dense bodies, microtubul,, glycogen, mitochondria, dense tubular system and invaginated membrane system in the same platelet and is useful for investigation of platelet ultrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号