首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.  相似文献   

2.
Acetate is a central intermediate in the anaerobic degradation of organic matter, and the resolution of its metabolism necessitates integrated strategies. This study aims to (1) estimate the contribution of acetogenesis to acetate formation in an acidic fen (pH ~ 4.9), (2) assess the genetic potential for acetogenesis targeting the fhs gene encoding formyltetrahydrofolate synthetase (FTHFS) and (3) unravel the in situ turnover of acetate using stable carbon isotope pore-water analysis. H(2)/CO(2)-supplemented peat microcosms yielded (13)C-depleted acetate (-37.2‰ vs. VPDB (Vienna Peedee belemnite standard) compared with -14.2‰ vs. VPDB in an unamended control), indicating the potential for H(2)-dependent acetogenesis. Molecular analysis revealed a high diversity and depth-dependent distribution of fhs phylotypes with the highest number of operational taxonomic units in 0-20 cm depth, but only few and distant relationships to known acetogens. In pore waters, acetate concentrations (0-170 μM) and δ(13)C-values varied widely (-17.4‰ to -3.4‰ vs. VPDB) and did not indicate acetogenesis, but pointed to a predominance of sinks, which preferentially consumed (12)C-acetate, like acetoclastic methanogenesis. However, depth profiles of methane and δ(13)C(CH4) revealed a temporarily and spatially restricted role of this acetate sink and suggest other processes like sulfate and iron reduction played an important role in acetate turnover.  相似文献   

3.
In this study, a large-scale field survey was conducted to describe the biogeography of sulfate-reducing prokaryotes (SRPs) in river floodplains. Fingerprints obtained with three methods, i.e. 16S rRNA gene-based oligonucleotide microarray, dsrB-based denaturing gradient gel electrophoresis (DGGE) and polar lipid-derived fatty acid (PLFA) analyses, were used as a proxy to describe the SRPs community diversity. Each set of profiles was subjected to a combined multivariate/correlation analysis in order to compare SRP community profiles and to highlight the environmental variables influencing the SRPs distribution along environmental gradients. Floodplain soils harbored distinct SRP communities displaying biogeographic patterns. Nearly all profiles from the tidal sites consistently separated from the nontidal sites, independently from the screening method and the multivariate statistics used. The distribution of the microarray/DGGE/PLFA-based fingerprints in the principal component plots could be correlated to eight soil variables, i.e. soil organic matter, total nitrogen, total phosphorous and total potassium, and extractable ammonium, nitrate, phosphate and sulfate, as well as seven pore water variables, i.e. phosphate, sulfate, sulfide, chloride, sodium, potassium and magnesium ions. Indication of a salinity- and plant nutrient-dependent distribution of SRPs related to Desulfosarcina, Desulfomonile and Desulfobacter was suggested by microarray, DGGE and PLFA analyses.  相似文献   

4.
Methanogenesis in wetlands is dependent on intermediary substrates derived from the degradation of biopolymers. Formate is one such substrate and is stimulatory to methanogenesis and acetogenesis in anoxic microcosms of soil from the fen Schlöppnerbrunnen. Formate dissimilation also yields CO2 as a potential secondary substrate. The objective of this study was to resolve potential differences between anaerobic formate- and CO2-utilizing prokaryotes of this fen by stable isotope probing. Anoxic soil microcosms were pulsed daily with low concentrations of [13C]formate or 13CO2 (i.e., [13C]bicarbonate). Taxa were evaluated by assessment of 16S rRNA genes, mcrA (encoding the alpha-subunit of methyl-coenzyme M reductase), and fhs (encoding formyltetrahydrofolate synthetase). Methanogens, acetogens, and formate-hydrogen lyase-containing taxa appeared to compete for formate. Genes affiliated with Methanocellaceae, Methanobacteriaceae, Acetobacteraceae, and Rhodospirillaceae were 13C enriched (i.e., labeled) in [13C]formate treatments, whereas genes affiliated with Methanosarcinaceae, Conexibacteraceae, and Solirubrobacteraceae were labeled in 13CO2 treatments. [13C]acetate was enriched in [13C]formate treatments, but labeling of known acetogenic taxa was not detected. However, several phylotypes were affiliated with acetogen-containing taxa (e.g., Sporomusa). Methanosaetaceae-affiliated methanogens appeared to participate in the consumption of acetate. Twelve and 58 family-level archaeal and bacterial 16S rRNA phylotypes, respectively, were detected, approximately half of which had no isolated representatives. Crenarchaeota constituted half of the detected archaeal 16S rRNA phylotypes. The results highlight the unresolved microbial diversity of the fen Schlöppnerbrunnen, suggest that differing taxa competed for the same substrate, and indicate that Methanocellaceae, Methanobacteriaceae, Methanosarcinaceae, and Methanosaetaceae were linked to the production of methane, but they do not clearly resolve the taxa responsible for the apparent conversion of formate to acetate.  相似文献   

5.
The vertical distribution and diversity of sulfate-reducing prokaryotes (SRPs) in a sediment core from the Pearl River Estuary was reported for the first time. The profiles of methane and sulfate concentrations along the sediment core indicated processes of methane production/oxidation and sulfate reduction. Phospholipid fatty acids analysis suggested that sulfur-oxidizing bacteria (SOB) might be abundant in the upper layers, while SRPs might be distributed throughout the sediment core. Quantitative competitive-PCR analysis indicated that the ratios of SRPs to total bacteria in the sediment core varied from around 2–20%. Four dissimilatory sulfite reductase ( dsrAB) gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), bottom layer (44–50 cm) and the sulfate-methane transition zone (32–42 cm) sediments. Most of the retrieved dsrAB sequences (80.9%) had low sequence similarity with known SRP sequences and formed deeply branching dsrAB lineages. Meanwhile, bacterial 16S rRNA gene analysis revealed that members of the Proteobacteria were predominant in these sediments. Putative SRPs within Desulfobacteriaceae, Syntrophaceae and Desulfobulbaceae of Deltaproteobacteria , and putative SOB within Epsilonproteobacteria were detected by the 16S rRNA gene analysis. Results of this study suggested a variety of novel SRPs in the Pearl River Estuary sediments.  相似文献   

6.
16S rRNA-based stable isotope probing identified active xylose- and glucose-fermenting Bacteria and active Archaea, including methanogens, in anoxic slurries of material obtained from a moderately acidic, CH(4)-emitting fen. Xylose and glucose were converted to fatty acids, CO(2), H(2), and CH(4) under moderately acidic, anoxic conditions, indicating that the fen harbors moderately acid-tolerant xylose- and glucose-using fermenters, as well as moderately acid-tolerant methanogens. Organisms of the families Acidaminococcaceae, Aeromonadaceae, Clostridiaceae, Enterobacteriaceae, and Pseudomonadaceae and the order Actinomycetales, including hitherto unknown organisms, utilized xylose- or glucose-derived carbon, suggesting that highly diverse facultative aerobes and obligate anaerobes contribute to the flow of carbon in the fen under anoxic conditions. Uncultured Euryarchaeota (i.e., Methanosarcinaceae and Methanobacteriaceae) and Crenarchaeota species were identified by 16S rRNA analysis of anoxic slurries, demonstrating that the acidic fen harbors novel methanogens and Crenarchaeota organisms capable of anaerobiosis. Fermentation-derived molecules are conceived to be the primary drivers of methanogenesis when electron acceptors other than CO(2) are absent, and the collective findings of this study indicate that fen soils harbor diverse, acid-tolerant, and novel xylose-utilizing as well as glucose-utilizing facultative aerobes and obligate anaerobes that form trophic links to novel moderately acid-tolerant methanogens.  相似文献   

7.
The community structure of sulfate-reducing bacteria in littoral and profundal sediments of the oligotrophic Lake Stechlin (Germany) was investigated. A collection of 32 strains was isolated from the highest positive dilutions of most-probable-number series, and their partial 16S rRNA gene sequences and genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-PCR were analyzed. The strains fell into eight distinct phylogenetic lineages, and the majority (70%) showed a close affiliation to the genus Desulfovibrio. Most of the remaining strains (22%) were related to the gram-positive Sporomusa and Desulfotomaculum groups. A high redundancy of 16S rRNA gene sequences was found within several of the phylogenetic lineages. This low phylogenetic diversity was most pronounced for the subset of strains isolated from oxic sediment layers. ERIC-PCR revealed that most of the strains with identical 16S rRNA gene sequences were genetically different. Since strains with identical 16S rRNA gene sequences but different genomic fingerprints also differed considerably with respect to their physiological capabilities, the high diversity detected in the present work is very likely of ecological relevance. Our results indicate that a high diversity of sulfate-reducing bacterial strains can be recovered from the natural environment using the established cultivation media. Received: 20 April 1998 / Accepted: 12 June 1998  相似文献   

8.
Studies of geographical patterns of diversity have focused largely on compiling and analysing data to evaluate alternative hypotheses for the near‐universal decrease in species richness from the equator to the poles. Valuable insights into the mechanisms that promote diversity can come from studies of other patterns, such as variation in species distributions with elevation in terrestrial systems or with depth in marine systems. To obtain such insights, we analysed and interpreted data on species diversity, depth of occurrence and body size of pelagic fishes along an oceanic depth gradient. We used a database on pelagic marine fishes native to the north‐east Pacific Ocean between 40°N and 50°N. We used data from the Pacific Rim Fisheries Program that were obtained from commercial, management and scientific surveys between 1999 and 2000. Depth of occurrence and maximum body length were used to assess the distributions of 409 species of pelagic fishes along a depth gradient from 0 to 8000 m. A presence–absence matrix was used to classify the depth range of each species into 100‐m intervals. Atmar & Patterson's (1995 ) software was used to quantify the degree of nestedness of species distributions. Pelagic fish species diversity decreased steeply with increasing depth; diversity peaked at less than 200 m and more than half of the species had mean depths of occurrence between 0 and 300 m. The distribution of species showed a very strong nested subset pattern along the depth gradient. Whereas species with narrow ranges were generally restricted to shallow waters, wide‐ranging species occurred from near the surface to great depths. The relationship between maximum body size and mean depth range differed between teleost and elasmobranch fishes: being positive for teleosts, but negative for elasmobranches. Results support hypotheses that some combination of high productivity and warm temperature promote high species diversity, and reject those that would attribute the pattern of species richness to the mid‐domain effect, habitat area, or environmental constancy. The data provided a clear example of Rapoport's rule, a negative correlation between average depth range and species diversity.  相似文献   

9.
Peatlands are sources of relevant greenhouse gases such as CH4, but the temporal presence of Fe(III) may inhibit methanogenesis. Because excess of carbon during the vegetation period might allow concomitant electron-accepting processes, Fe(III) reduction and methanogenesis were studied during an annual season in an acidic fen. The upper peat layer displayed the highest Fe(II)- and CH4-forming activities. The rates of Fe(II) formation did not change during the year and methanogenesis started mostly when Fe(II) formation reached a plateau. Most of the Fe(III) pool seemed to be bioavailable, and addition of nitrilotriacetic acid stimulated only light Fe(II) formation, whereas EDTA and anthraquinone-2,6-disulfonate had no effect. In the presence of an inhibitor for methanogenesis (sodium 2-bromoethanesulfonate), Fe(II) formation was inhibited to 45%. Addition of Fe(III) during ongoing methanogenesis led only to a partial inhibition of CH4 formation. The proportion of acetoclastic methanogenesis varied between 42% and 90%, but no trend with time was observed. The number of acetate-, ethanol- or lactate-utilizing Fe(III) reducers approximated 10(5)-10(6) cells g (fresh wt peat)(-1). Fermentative glucose-utilizing Fe(III)-reducers were most abundant. Our results suggest that (1) methanogens used Fe(III) as an electron acceptor and (2) fermenting bacteria, which do not compete with methanogens for common electron donors, dominated the reduction of Fe(III) in this fen.  相似文献   

10.
Low-sulfate, acidic (approximately pH 4) fens in the Lehstenbach catchment in the Fichtelgebirge mountains in Germany are unusual habitats for sulfate-reducing prokaryotes (SRPs) that have been postulated to facilitate the retention of sulfur and protons in these ecosystems. Despite the low in situ availability of sulfate (concentration in the soil solution, 20 to 200 μM) and the acidic conditions (soil and soil solution pHs, approximately 4 and 5, respectively), the upper peat layers of the soils from two fens (Schlöppnerbrunnen I and II) of this catchment displayed significant sulfate-reducing capacities. 16S rRNA gene-based oligonucleotide microarray analyses revealed stable diversity patterns for recognized SRPs in the upper 30 cm of both fens. Members of the family “Syntrophobacteraceae” were detected in both fens, while signals specific for the genus Desulfomonile were observed only in soils from Schlöppnerbrunnen I. These results were confirmed and extended by comparative analyses of environmentally retrieved 16S rRNA and dissimilatory (bi)sulfite reductase (dsrAB) gene sequences; dsrAB sequences from Desulfobacca-like SRPs, which were not identified by microarray analysis, were obtained from both fens. Hypotheses concerning the ecophysiological role of these three SRP groups in the fens were formulated based on the known physiological properties of their cultured relatives. In addition to these recognized SRP lineages, six novel dsrAB types that were phylogenetically unrelated to all known SRPs were detected in the fens. These dsrAB sequences had no features indicative of pseudogenes and likely represent novel, deeply branching, sulfate- or sulfite-reducing prokaryotes that are specialized colonists of low-sulfate habitats.The dissimilatory reduction of sulfate is carried out exclusively by prokaryotic organisms and is one of the most important mineralization processes in anoxic aquatic environments, especially marine sediments (29, 30). In contrast to well-studied sulfate-reducing communities in marine (18, 19, 38, 41, 53, 56, 57, 72) and freshwater habitats (39, 40, 59, 60), relatively little is known about the distribution, diversity, and in situ activities of sulfate-reducing prokaryotes (SRPs) in terrestrial ecosystems. The contribution of terrestrial SRPs to the overall turnover of organic matter is likely of minor importance on a global scale. However, SRPs contribute to the biodegradation of pollutants in soils and subsurface environments (1, 15, 49, 71) and are important to the geomicrobiology of specialized terrestrial habitats that are subject to flooding, such as rice fields (68, 76, 77) and fens (3, 5).δ34S values and 35S-labeling patterns indicate that the dissimilatory reduction of sulfate is an ongoing process in the acidic fens of a forested catchment in northern Bavaria, Germany (Lehstenbach, Fichtelgebirge) (3, 5). The deposition of sulfur that originated from the combustion of soft coal in Eastern Europe (10) led to accumulation of sulfur in the soils of this catchment (4). Although pollution controls have lessened the deposition in recent years, desorption of sulfate in aerated upland soils causes sulfate to enter fens at lower elevations. It was hypothesized that the dissimilatory reduction of sulfate in these mainly anoxic, waterlogged acidic fen soils (the pH of the fen soils is approximately 4) contributes to the retention of sulfur in this ecosystem (3, 4, 50). The reduction of sulfate in these fens is also a sink for protons and thus decreases the acidity of the soil solution and groundwater of this habitat.The acidity and low sulfate content of some of the fens in the Lehstenbach catchment provide an unusual habitat for SRPs, and the occurrence and activity of these organisms in such habitats have received little attention. The main objectives of this study were (i) to assess the capacity of the fen soils to reduce sulfate along vertical soil profiles in the upper peat layers, (ii) to determine the vertical community profiles for all known SRP lineages that inhabit the fens by the use of a 16S rRNA-based oligonucleotide microarray (SRP-PhyloChip) (44), (iii) to resolve the possible existence of novel SRP lineages in the fens by retrieval of dsrAB, which are genes that encode the alpha and beta subunits of the siroheme dissimilatory (bi)sulfite reductase (EC 1.8.99.3) (34, 66, 74), and (iv) to deduce the possible in situ functional relationships that can be inferred from this collective information.  相似文献   

11.
12.
The nature and extent of microbial biodiversity remain controversial with persistent debates over patterns of distributions (i.e. cosmopolitanism versus endemism) and the processes that structure these patterns (neutrality versus selection). We used culture‐independent approaches to address these issues focusing on two groups of ciliates, the Oligotrichia (Spirotrichea) and Choreotrichia (Spirotrichea) across an environmental gradient. We assessed SSU rDNA diversity in ciliate communities at six stations in Long Island Sound spanning the frontal region that separates the fresher Connecticut River outflow plume from the open Sound. As in previous studies, we find one abundant cosmopolitan species (Strombidium biarmatum), a few moderately abundant sequences, and a long list of rare sequences. Furthermore, neither ciliate diversity nor species composition showed any clear relationship to measured environmental parameters (temperature, salinity, accessory pigment composition and chorophyll). Overall, we observed that diversity decreased moving from nearshore to offshore. We also conducted analyses to detect clustering among the sampled communities using the software Unifrac. This approach revealed three significant clusters grouping samples from nearshore, surface and deep/well mixed stations. We find no strong fit of our communities to log series, geometric or log normal distributions, though one of the 3 clusters is most consistent with a log series distribution. However, when we remove the abundant cosmopolitan species S. biarmatum, all three clusters fit to a log series distribution. These analyses suggest that, with the exception of one cosmopolitan species, the oligotrich and choreotrich communities at these stations may be distributed in a neutral manner.  相似文献   

13.
Question: The seed production in several wetland communities across Europe was investigated and differences in seed output in relation to disturbance intensity were tested. The relationship between the vegetation composition and the seed production profile was examined and the results are discussed in relation to restoration. Location: Poland, Germany and the Netherlands. Methods: The seed production in various plant communities was estimated, based on field counts. In addition, records from available databases were used for missing data. Multivariate methods were used to characterize the vegetation and seed production. Communities were grouped according to level of disturbance and tested for differences in seed production. Similarity between vegetation composition and seed profile was examined using the Sørensen index and Spearman correlation coefficient. Results: It was found that the seed production of the studied communities is large, variable and in general increasing with disturbance intensity. The estimated median seed production was ca. 24 × 103 seeds m?2 in fens, 167 × 103 in fen meadows and 556 × 103 seeds m?2 in degraded meadows. The majority of seeds was produced by just a few species. The similarity between the vegetation composition and the seed production profile was low (similarity 52%, correlation coefficient 0.42, P<0.05) and slightly increased with disturbance intensity. Conclusions: Increased disturbance enhances seed production at the community level. The composition of the vegetation is a poor predictor of the seed output. It is estimated that the number of seeds transferred with hay is much lower than the seed production in fens and fen meadows.  相似文献   

14.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

15.
Here, we describe a three-step nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to detect sulfate-reducing bacteria (SRB) in complex microbial communities from industrial bioreactors. In the first step, the nearly complete 16S rRNA gene was amplified using bacterial primers. Subsequently, this product was used as a template in a second PCR with group-specific SRB primers. A third round of amplification was conducted to obtain fragments suitable for DGGE. The largest number of bands was observed in DGGE patterns of products obtained with primers specific for the Desulfovibrio-Desulfomicrobium group, indicating a large diversity of these SRBs. In addition, members of other phylogenetic SRB groups, i.e., Desulfotomaculum, Desulfobulbus, and Desulfococcus-Desulfonema-Desulfosarcina, were detected. Bands corresponding to Desulfobacterium and Desulfobacter were not detected in the bioreactor samples. Comparative sequence analysis of excised DGGE bands revealed the identity of the community members. The developed three-step PCR-DGGE strategy is a welcome tool for studying the diversity of sulfate-reducing bacteria.  相似文献   

16.
In spite of the nonsulfidic conditions and abundant reactive iron(III) commonly found in mobile tropical deltaic muds, genes encoding dissimilatory sulfite reductase (dsr) were successfully amplified from the upper approximately 1 m of coastal deposits sampled along French Guiana and in the Gulf of Papua. The dsr sequences retrieved were highly diverse, were generally represented in both study regions and fell into six large phylogenetic groupings: Deltaproteobacteria, Thermodesulfovibrio groups, Firmicutes and three groups without known cultured representatives. The spatial and temporal distribution of dsr sequences strongly supports the contention that the sulfate-reducing prokaryote communities in mobile mud environments are cosmopolitan and stable over a period of years. The decrease in the (35)SO(4) (2-) tracer demonstrates that, despite abundant reactive sedimentary iron(III) ( approximately 350-400 mumol g(-1)), the sulfate-reducing prokaryotes present are active, with the highest levels of sulfide being generated in the upper zones of the cores (0-30 cm). Both the time course of the (35)S-sulfide tracer activity and the lack of reduced sulfur in sediments demonstrate virtually complete anaerobic loss of solid phase sulfides. We propose a pathway of organic matter oxidation involving at least 5-25% of the remineralized carbon, wherein sulfide produced by sulfate-reducing prokaryotes is cyclically oxidized biotically or abiotically by metal oxides.  相似文献   

17.
The abundance and structure of archaeal and bacterial communities from the active layer and the associated permafrost of a moderately acidic (pH < 5.0) High Arctic wetland (Axel Heiberg Island, Nunavut, Canada) were investigated using culture- and molecular-based methods. Aerobic viable cell counts from the active layer were ~100-fold greater than those from the permafrost (2.5 × 10(5) CFU·(g soil dry mass)(-1)); however, a greater diversity of isolates were cultured from permafrost, as determined by 16S rRNA gene sequencing. Isolates from both layers demonstrated growth characteristics of a psychrotolerant, halotolerant, and acidotolerant community. Archaea constituted 0.1% of the total 16S rRNA gene copy number and, in the 16S rRNA gene clone library, predominantly (71% and 95%) consisted of Crenarchaeota related to Group I. 1b. In contrast, bacterial communities were diverse (Shannon's diversity index, H = ~4), with Acidobacteria constituting the largest division of active layer clones (30%) and Actinobacteria most abundant in permafrost (28%). Direct comparisons of 16S rRNA gene sequence data highlighted significant differences between the bacterial communities of each layer, with the greatest differences occurring within Actinobacteria. Comparisons of 16S rRNA gene sequences with those from other Arctic permafrost and cold-temperature wetlands revealed commonly occurring taxa within the phyla Chloroflexi, Acidobacteria, and Actinobacteria (families Intrasporangiaceae and Rubrobacteraceae).  相似文献   

18.
Clonal composition of a large, expanding reed stand was studied with two genetic profiling methods. Sampling was carried out along two parallel, and two perpendicular transects at the shore of Lake Balaton, Hungary, in a 900 m long reed stand, with distances between sampling points ranging from 15 to 30 m. The four primer pairs involved in microsatellite comparisons provided a total of 45 polymorphic allelic variants that determined 61 multilocus phenotypes. Along the transects, clone number decreased towards the deep water. RAPD analysis involved eleven random decamer primers and 115 repeatably amplifying and polymorphic RAPD fragments. Applying our new data evaluation method, highly similar information was gained from RAPD investigation and the microsatellite method on the number and extension of the clones. The results demonstrated that clone competition along a water depth gradient where generative reproduction is allowed only at the lakeshore edge brings about decreasing genetic diversity irrespectively of the health status of reed stand.  相似文献   

19.
韩路  王海珍 《生态学报》2024,44(2):832-843
探讨荒漠河岸林土壤水分、物种多样性的空间变异性及其相互关系,可为干旱区天然林保护、可持续经营和生态恢复提供科学依据。以塔里木荒漠河岸林为研究对象,基于野外样带调查和采样测定,系统分析了地下水埋深(GWD)梯度下林地土壤水分与物种多样性的空间变异及其权衡关系。结果表明:随GWD增加和土壤水分减少,荒漠河岸林群落物种数减少、结构简化、群落发生退化,退化顺序为浅根系的中生草本植物和灌木,最后留存的是抗旱性较强的乔灌木或灌木;同时土壤水分和物种丰富度、物种多样性指数均呈显著的线性递减趋势,而物种均匀度指数降幅较小。GWD与土壤水分、物种多样性之间均呈极显著的相关(P<0.01),土壤水分与物种多样性的相对收益随GWD增加而逐渐降低,表明GWD是控制荒漠河岸林土壤水分和物种多样性空间变异的关键因素。荒漠河岸林土壤水分与物种多样性权衡关系的转折点为GWD 4.5m左右,转折点以下(GWD<4.5m)二者沿GWD以相同速率变化,呈协同关系;转折点以上(GWD>4.5m)土壤水分与物种多样性的权衡明显增大,土壤水分相对收益剧降,即维持当前相应的物种多样性以消耗土壤水分为代价,系统通过反馈调节使物种多样性降低。综上表明,维持塔里木荒漠河岸林物种多样性和生态系统功能的合理GWD在4.5m左右,这为塔里木河流域荒漠河岸林保育与生态输水工程实施提供科学依据。  相似文献   

20.
Virus-prokaryote interactions were investigated in four natural sites in Senegal (West Africa) covering a salinity gradient ranging from brackish (10‰) to near salt saturation (360‰). Both the viral and the prokaryote communities exhibited remarkable differences in their physiological, ecological and morphological traits along the gradient. Above 240‰ salinity, viral and prokaryotic abundance increased considerably with the emergence of (1) highly active square haloarchaea and of (2) viral particles with pleiomorphic morphologies (predominantly spindle, spherical and linear shaped). Viral life strategies also showed some salinity-driven dependence, switching from a prevalence of lytic to lysogenic modes of infection at the highest salinities. Interestingly, the fraction of lysogenized cells was positively correlated with the proportion of square cells. Overall, the extraordinary abundance of viruses in hypersaline systems (up to 6.8 × 10(8) virus-like particles per milliliter) appears to be partly explained by their high stability and specific ability to persist and proliferate in these apparently restrictive habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号