首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Choi D  Lee Y  Cho HT  Kende H 《The Plant cell》2003,15(6):1386-1398
To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening.  相似文献   

3.
4.
A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L. Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/ FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schürmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37-45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.  相似文献   

5.
Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics.  相似文献   

6.
UMP kinase activity is involved in proper chloroplast development in rice   总被引:1,自引:0,他引:1  
Isolation of leaf-color mutants is important in understanding the mechanisms of chloroplast biogenesis and development. In this study, we identified and characterized a rice (Oryza sativa) mutant, yellow leaf 2 (yl2), exhibiting pale yellow leaves with a few longitudinal white stripes at the early seedling stage then gradually turning yellow. Genetic analyses revealed that YL2 encodes a thylakoid membrane-localized protein with significant sequence similarity to UMP kinase proteins in prokaryotes and eukaryotes. Prokaryotic UMP kinase activity was subsequently confirmed, with YL2 deficiency causing a significant reduction in chlorophyll accumulation and photochemical efficiency. Moreover, YL2 is also light dependent and preferentially expressed in green tissues. Chloroplast development was abnormal in the yl2 mutant, possibly due to reduced accumulation of thylakoid membranes and a lack of normal stroma lamellae. 2D Blue-Native SDS-PAGE and immunoblot analyses revealed a reduction in several subunits of photosynthetic complexes, in particular, the AtpB subunit of ATP synthase, while mRNA levels of corresponding genes were unchanged or increased compared with the wild type. In addition, we observed a significant decrease (ca. 36.3%) in cpATPase activity in the yl2 mutant compared with the wild type. Taken together, our results suggest that UMP kinase activity plays an essential role in chloroplast development and regulating cpATPase biogenesis in rice.  相似文献   

7.
Zhao C  Wang J  Cao M  Zhao K  Shao J  Lei T  Yin J  Hill GG  Xu N  Liu S 《Proteomics》2005,5(4):961-972
Of the numerous factors affecting rice yield, how solar radiation is transformed into biomass through rice leaves is the most important. We have analyzed proteomic changes in rice leaves collected from six different developing stages (vegetative to ripening). We studied protein expression profiles of rice leaves by running two-dimensional gel electrophoresis. Differential protein expression among the six phases were analyzed by image analysis, which allowed the identification of 49 significantly different gel spots. The spots were further verified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, in which 89.8% of them were confirmed to be rice proteins. Finally, we confirmed some of the interesting rice proteins by immunoblotting. Three major conclusions can be drawn from these experimental results. (i) Protein expression in rice leaves, at least for high or middle abundance proteins, is attenuated during growth (especially some chloroplast proteins). However, the change is slow and the expression profiles are relatively stable during rice development. (ii) Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), a major protein in rice leaves, is expressed at constant levels at different growth stages. Interestingly, a high ratio of degradation of the RuBisCO large subunit was found in all samples. This was confirmed by two approaches, mass spectrometry and immunoblotting. The degraded fragments are similar to other digested products of RuBisCO mediated by free radials. (iii) The expression of antioxidant proteins such as superoxide dismutase and peroxidase decline at the early ripening stage.  相似文献   

8.
Thioredoxins (TRXs) mediate light‐dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox‐regulated enzymes. Of the two plastid TRX systems, the ferredoxin‐TRX system consists of ferredoxin‐thioredoxin reductase (FTR) and multiple TRXs, while the NADPH‐dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd‐TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non‐photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX‐regulated enzymes in Calvin–Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose‐1,6‐bisphosphatase, phosphoribulokinase and CF1γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC‐mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin‐TRX system and is crucial when availability of light is limiting photosynthesis.  相似文献   

9.
Zhou  Kunneng  Ren  Yulong  Zhou  Feng  Wang  Ying  Zhang  Long  Lyu  Jia  Wang  Yihua  Zhao  Shaolu  Ma  Weiwei  Zhang  Huan  Wang  Liwei  Wang  Chunming  Wu  Fuqing  Zhang  Xin  Guo  Xiupin  Cheng  Zhijun  Wang  Jiulin  Lei  Cailin  Jiang  Ling  Li  Zefu  Wan  Jianmin 《Planta》2017,245(1):45-60
Planta - Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling...  相似文献   

10.
The interaction between chloroplast fructose-1,6-bisphosphatase (FBPase) and thioredoxin (Trx) f , two plant proteins involved in the Benson-Calvin cycle, is mainly of an electrostatic nature [Hermoso et al. (1996) Plant Mol Biol 30: 455–465; Reche et al. (1997) Physiol Plant 101: 463–470; Sahrawy et al. (1997) J Mol Biol 269: 623–630; Hermoso et al. (1999) Physiol Plant 105: 756–762], possibly involving carboxyl groups of the enzyme and amino groups of Trx f . We carried out the covalent stabilization of that ionic complex, for the purpose of studying the interaction between both proteins and the factors that influence it. We have used 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, a reagent able to cross-link carboxyl and amino groups, which allows the formation of covalent bonds between the groups that, in solution, form ionic bonds. A stable functional complex between both proteins was formed. The efficiency in the formation of that complex depends on the redox state of Trx f , ionic strength and pH, showing a strong correlation with the Trx f -dependent enzyme activity. The complex also retains enzyme activity. This suggests that the formation of the covalent complex requires the previous stabilization of a specific functional ionic complex between both proteins, and that in this functional complex carboxyl groups of the enzyme and primary amines of Trx f are involved. This complex is not stable in a tetrameric structure of the enzyme. We could also detect covalent aggregates of FBPase subunits, which indicates the implication of ionic interactions in the stabilization of the tetrameric structure of the enzyme; besides, as molecular filtration experiments and electrophoresis suggest, hydrophobic forces would also be implicated in the enzyme structure.  相似文献   

11.
Oxidation-reduction midpoint potentials were determined, as a function of pH, for the disulfide/dithiol couples of spinach and pea thioredoxins f, for spinach and Chlamydomonas reinhardtii thioredoxins m, for spinach ferredoxin:thioredoxin reductase (FTR), and for two enzymes regulated by thioredoxin f, spinach phosphoribulokinase (PRK) and the fructose-1,6-bisphosphatases (FBPase) from pea and spinach. Midpoint oxidation-reduction potential (Em) values at pH 7.0 of -290 mV for both spinach and pea thioredoxin f, -300 mV for both C. reinhardtii and spinach thioredoxin m, -320 mV for spinach FTR, -290 mV for spinach PRK, -315 mV for pea FBPase, and -330 mV for spinach FBPase were obtained. With the exception of spinach FBPase, titrations showed a single two-electron component at all pH values tested. Spinach FBPase exhibited a more complicated behavior, with a single two-electron component being observed at pH values >/= 7.0, but with two components being present at pH values <7.0. The slopes of plots of Em versus pH were close to the -60 mV/pH unit value expected for a process that involves the uptake of two protons per two electrons (i. e., the reduction of a disulfide to two fully protonated thiols) for thioredoxins f and m, for FTR, and for pea FBPase. The slope of the Em versus pH profile for PRK shows three regions, consistent with the presence of pKa values for the two regulatory cysteines in the region between pH 7.5 and 9.0.  相似文献   

12.
13.
14.
In rice ( Oryza sativa ) seedlings, continuous white-light irradiation inhibited the growth of seminal roots but promoted the growth of crown roots. In this study, we examined the mechanisms of photoinhibition of seminal root growth. Photoinhibition occurred in the absence of nitrogen but increased with increasing nitrogen concentrations. In the presence of nitrogen, photoinhibition was correlated with coiling of the root tips. The seminal roots were most photosensitive 48–72 h after germination during the 7-day period after germination. White-light irradiation for at least 6 h was required for photoinhibition, and the Bunsen–Roscoe law of reciprocity was not observed. Experiments with phytochrome mutants showed that far-red light was perceived exclusively by phyA, red light was perceived by both phyA and phyB, and phyC had little or no role in growth inhibition or coiling of the seminal roots. These results also suggest that other blue-light photoreceptors are involved in growth inhibition of the seminal roots. Fluence-response curve analyses showed that phyA and phyB control very low-fluence response and low-fluence response, respectively, in the seminal roots. This was essentially the same as the growth inhibition previously observed at the late stage of coleoptile development (80 h after germination). The photoperceptive site for the root growth inhibition appeared to be the roots themselves. All three phytochrome species of rice were detected immunochemically in roots.  相似文献   

15.
16.
17.
We have taken advantage of the transformation properties of the cyanobacterium Anacystis nidulans R2 to investigate the importance of thioredoxin for photosynthetic growth. The gene encoding thioredoxin m, designated trxM, was cloned from A. nidulans using a synthetic oligonucleotide probe. Based on the nucleotide sequence, thioredoxin m of A. nidulans is composed of 107 amino acids and shares 84, 48, and 48% sequence identity with thioredoxins from Anabaena, spinach, and Escherichia coli, respectively. The trxM gene is single copy and is transcribed on a 510-nucleotide mRNA. We demonstrate that disruption of the trxM gene with a kanamycin resistance gene cartridge is a lethal mutation. Although dispensable in E. coli, thioredoxin is essential for the photosynthetic growth of A. nidulans.  相似文献   

18.
19.
Thioredoxin derivatives lacking SH groups such as S,S'-dicarboxymethyl-, dicarboxamidomethyl-thioredoxin and cysteine----serine mutant protein are capable of activating chloroplast NADP malate dehydrogenase and fructose-bisphosphatase when added to enzyme assays together with suboptimal amounts of native thioredoxin. The modified thioredoxins alone are inactive. These findings indicate that protein-protein interactions play a significant role in addition to disulfide/thiol exchange reactions in the light-driven regulation of plant enzymes by the various plant thioredoxins.  相似文献   

20.
A study of the kinetics of chlorophyll (Chl) synthesis in cotyledons of etiolated cucumber seedlings ( Cucumis sativus L . cv. Delilah) treated with 5×10-5 M -ben-zyladenine (BA) showed that cytokinin, like a red light pulse, could inhibit as well as promote pigment accumulation depending on the length of the dark period following induction. Spraying intact, dark-grown seedlings with BA, 24 h prior to white light exposure, eliminated the lag phase in Chl synthesis, while treatment with hormone 72 h before greening not only delayed the onset of synthesis, but it also reduced the amount of Chl accumulated after 24 h continuous white light. Impairment of Chl formation was correlated with inhibited regeneration of protochlorophyll and delayed appearance of the light harvesting Chl alb polypeptide. Application of σ-aminolevulinic acid (15 m M ) 2 h before white light exposure shortened the lag phase in Chl synthesis in control as well as in inhibited cotyledons, but the adverse effect of the red light and BA treatments on long-term Chl accumulation (24 h) was not reversed. Application of glutamate did not stimulate Chl production. Simultaneous treatment with hormone and red light 72 h before greening enhanced their separate inhibitory effects on Chl synthesis, but when given together 24 h prior to white light, their promotive effects on pigment accumulation were not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号