首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The denitrification pathway has been studied in the hyperthermophilic archaeon Pyrobaculum aerophilum. In contrast with Gram-negative bacteria, all four denitrification enzymes are membrane-bound. P. aerophilum is also the only denitrifyer identified so far in which menaquinol is the electron donor to all four denitrification reductases. The NO reductase (NOR) of P. aerophilum belongs to the superfamily of haem-copper oxidases and is of the qNOR (quinol-dependent) type. Three types of NOR have been purified so far: cNOR (cytochrome c/pseudoazurin-dependent), qNOR and qCu(A)NOR (qNOR that contains Cu(A) at the electron entry site). It is proposed that the NORs and the various cytochrome oxidases have evolved by modular evolution, in view of the structure of their electron donor sites. qNOR is further proposed to be the ancestor of all NORs and cytochrome oxidases belonging to the superfamily of haem-copper oxidases.  相似文献   

2.
The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba(3)-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A. Here, we describe the presence in this enzyme of an additional transmembrane helix "subunit IIa", which is composed of 41 amino acid residues with a measured molecular mass of 5105 Da. Moreover, we show that subunit II, as expected, is in fact longer than the originally annotated protein (from the genome) and contains a transmembrane domain. Using Aquifex aeolicus genomic sequence analyses, N-terminal sequencing, peptide mass fingerprinting and mass spectrometry analysis on entire subunits, we conclude that the B-type enzyme from this bacterium is a three-subunit complex. It is composed of subunit I (encoded by coxA(2)) of 59000 Da, subunit II (encoded by coxB(2)) of 16700 Da and subunit IIa which contain 12, 1 and 1 transmembrane helices respectively. A structural model indicates that the structural organization of the complex strongly resembles that of the ba(3) cytochrome c oxidase from the bacterium Thermus thermophilus, the IIa helical subunit being structurally the lacking N-terminal transmembrane helix of subunit II present in the A-type oxidases. Analysis of the genomic context of genes encoding oxidases indicates that this third subunit is present in many of the bacterial oxidases from B-family, enzymes that have been described as two-subunit complexes.  相似文献   

3.
The terminal component of the electron transport chain, cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase) was purified from Bacillus subtilis W23. The enzyme was solubilized with alkyglucosides and purified to homogeneity by cytochrome c affinity chromatography. The enzyme showed absorption maxima at 414 nm and 598 nm in the oxidized form and at 443 nm and 601 nm in the reduced form. Upon reaction with carbon monoxide of the reduced purified enzyme the absorption maxima shifted to 431 nm and 598 nm. Sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the purified enzyme is composed out of three subunits with apparent molecular weights of 57 000, 37 000 and 21 000. This is the first report on a bacterial aa3-type oxidase containing three subunits. The functional properties of the enzyme are comparable with those of the other bacterial cytochrome c oxidases. The reaction catalyzed by this oxidase was strongly inhibited by cyanide, azide and monovalent salts. Furthermore a strong dependence of cytochrome c oxidase activity on negatively charged phospholipids was observed. Crossed immunoelectrophoresis experiments strongly indicated a transmembranal localization of cytochrome c oxidase.  相似文献   

4.
Experimental evidence suggests that the prokaryotic respiratory cytochrome bd quinol oxidase is responsible for both bioenergetic functions and bacterial adaptation to different stress conditions. The enzyme, phylogenetically unrelated to the extensively studied heme-copper terminal oxidases, is found in many commensal and pathogenic bacteria. Here, we review current knowledge on the catalytic intermediates of cytochrome bd and their reactivity towards nitric oxide (NO). Available information is discussed in the light of the hypothesis that, owing to its high NO dissociation rate, cytochrome bd confers resistance to NO-stress, thereby providing a strategy for bacterial pathogens to evade the NO-mediated host immune attack.  相似文献   

5.
Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666-70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb(3) oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed.  相似文献   

6.
The heme–copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs). We suggest that the C-type oxidases are ancient enzymes that emerged from the NORs. In contrast, the A-type oxidases are the most advanced from both structural and functional viewpoints, which we interpret as evidence for having evolved later.  相似文献   

7.
Purification and characterization of plant cytochrome c oxidases have been impeded by the difficulty of obtaining enough plant mitochondria. We have found commercial wheat germ to be a rich and convenient source of mitochondrial membranes containing respiratory chain complexes in ratios and amounts similar to mitochondria prepared from etiolated seedlings. Cytochrome c oxidase was purified from these membranes by anion-exchange (MonoQ) fast protein liquid chromatography. The enzyme is highly active (turnover number up to 1000 s-1) and exhibits biphasic cytochrome c reaction kinetics similar to those of beef heart oxidase. As with other plant oxidases, the visible spectrum of wheat germ oxidase in the reduced form is blue-shifted compared to other eukaryotic cytochrome oxidases, with peaks at 441 and 602 nm. The electron paramagnetic resonance spectrum of CuA of the wheat germ enzyme is very similar to that of the maize and beef heart enzymes, suggesting that the copper environment is not altered. Sodium dodecyl sulfate-polyacrylamide gels show a subunit composition in which subunits I-IV resemble those of the yeast enzyme in size and antigenicity, while three to four smaller peptides are dissimilar to yeast and other eukaryotic oxidases. A difference between the subunit composition of the wheat germ and wheat seedling enzymes suggests the existence of a developmental or tissue-specific form of cytochrome oxidase in plants.  相似文献   

8.
The bacterial nitric oxide reductase (NOR) is a divergent member of the family of respiratory heme-copper oxidases. It differs from other family members in that it contains an Fe(B)-heme-Fe dinuclear catalytic center rather than a Cu(B)-heme-Fe center and in that it does not pump protons. Several glutamate residues are conserved in NORs but are absent in other heme-copper oxidases. To facilitate mutagenesis-based studies of these residues in Paracoccus denitrificans NOR, we developed two expression systems that enable inactive or poorly active NOR to be expressed, characterized in vivo, and purified. These are (i) a homologous system utilizing the cycA promoter to drive aerobic expression of NOR in P. denitrificans and (ii) a heterologous system which provides the first example of the expression of an integral-membrane cytochrome bc complex in Escherichia coli. Alanine substitutions for three of the conserved glutamate residues (E125, E198, and E202) were introduced into NOR, and the proteins were expressed in P. denitrificans and E. coli. Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI. The subsequent purification and spectroscopic characterization of these enzymes established that they are stable and have a wild-type cofactor composition. Possible roles for these glutamates in proton uptake and the chemistry of NO reduction at the active site are discussed.  相似文献   

9.
Aerobically grown Rhodobacter sphaeroides synthesizes a respiratory chain similar to that of eukaryotes. We describe the purification of the aa3-type cytochrome c oxidase of Rb. sphaeroides as a highly active (Vmax > or = 1800 s-1), three-subunit enzyme from isolated, washed cytoplasmic membranes by hydroxylapatite chromatography and anion exchange fast protein liquid chromatography. The purified oxidase exhibits biphasic kinetics of oxidation of mammalian cytochrome c, similar to mitochondrial oxidases, and pumps protons efficiently (H+/e- = 0.7) following reconstitution into phospholipid vesicles. A membrane-bound cytochrome c is associated with the aa3-type oxidase in situ, but is removed during purification. The EPR spectra of the Rb. sphaeroides enzyme suggest the presence of a strong hydrogen bond to one or both of the histidine ligands of heme a. In other respects, optical, EPR, and resonance Raman analyses of the metal centers and their protein environments demonstrate a close correspondence between the bacterial enzyme and the structurally more complex bovine cytochrome c oxidase. The results establish this bacterial oxidase as an excellent model system for the mammalian enzyme and provide the basis for site-directed mutational analysis of its energy transducing function.  相似文献   

10.
The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.  相似文献   

11.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

12.
The cytochrome cbb3 is an isoenzyme in the family of cytochrome c oxidases. This protein purified from Pseudomonas stutzeri displays a cyanide-sensitive nitric oxide reductase activity (Vmax=100+/-9 mol NO x mol cbb3(-1) x min(-1) and Km=12+/-2.5 microm), which is lost upon denaturation. This enzyme is only partially reduced by ascorbate, and readily re-oxidized by NO under anaerobic conditions at a rate consistent with the turnover number for NO consumption. As shown by transient spectroscopy experiments and singular value decomposition (SVD) analysis, these results suggest that the cbb3-type cytochromes, sharing structural features with bacterial nitric oxide reductases, are the enzymes retaining the highest NO reductase activity within the heme-copper oxidase superfamily.  相似文献   

13.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

14.
Two cytochrome oxidases, cytochrome aa3 (EC 1.9.3.1) and cytochrome o, have been purified from the membranes of a thermophilic bacterium, PS3. The enzymes were solubilized with Triton X-100 and purified to apparent homogeneity on anion-exchange columns. The properties of the three-subunit cytochrome oxidase complex caa3 obtained here are compared with the same enzyme isolated by Sone, N. and Yanagita, Y. (1982) (Biochim. Biophys. Acta 682, 216-226). On storage, the purified caa3 enzyme undergoes denaturation; a shoulder at 432 nm seen in (CO-reduced)-minus-reduced difference spectra may be due in part to denaturation products of the enzyme. The purified cytochrome o is more stable. At room temperature, the reduced-minus-oxidized difference spectrum shows absorbance maxima at 427 and 559 nm; at 77 K, its alpha-band is split into 554 and 557 nm components. At room temperature, the CO-reduced-minus-reduced spectrum shows troughs at 430 nm and 560 nm. Dissociating polyacrylamide gel electrophoresis suggests that the purified cytochrome o is composed of one type of subunit with an apparent molecular mass of 47 000-48 000. Metal analysis of the purified enzyme demonstrated the lack of copper. Both oxidases, purified in the presence of Triton X-100, exist in highly polydisperse forms.  相似文献   

15.
Bacterial bd-type quinol oxidases, such as cytochrome bd from Escherichia coli, contain three hemes, but no copper. In contrast to heme-copper oxidases and similarly to globins, single electron-reduced cytochrome bd forms stable complexes with O(2), NO and CO at ferrous heme d. Kinetics of ligand dissociation from heme d(2+) in the single electron- and fully-reduced cytochrome bd from E. coli has been investigated by rapid mixing spectrophotometry at 20 degrees C. Data show that (i) O(2) dissociates at 78 s(-1), (ii) NO and CO dissociation is fast as compared to heme-copper oxidases and (iii) dissociation in the single electron-reduced state is hindered as compared to the fully-reduced enzyme. Presumably, rapid ligand dissociation requires reduced heme b(595). As NO, an inhibitor of respiratory oxidases, is involved in the immune response against microbial infection, the rapid dissociation of NO from cytochrome bd may have important bearings on the patho-physiology of enterobacteria.  相似文献   

16.
Cytochrome bd is one of the two terminal quinol oxidases in the respiratory chain of Escherichia coli. The enzyme catalyzes charge separation across the bacterial membrane during the oxidation of quinols by dioxygen but does not pump protons. In this work, the reaction of cytochrome bd with O(2) and related reactions has been studied by time-resolved spectrophotometric and electrometric methods. Oxidation of the fully reduced enzyme by oxygen is accompanied by rapid generation of membrane potential (delta psi, negative inside the vesicles) that can be described by a two-step sequence of (i) an initial oxygen concentration-dependent, electrically silent, process (lag phase) corresponding to the formation of a ferrous oxy compound of heme d and (ii) a subsequent monoexponential electrogenic phase with a time constant <60 mus that matches the formation of ferryl-oxo heme d, the product of the reaction of O(2) with the 3-electron reduced enzyme. No evidence for generation of an intermediate analogous to the "peroxy" species of heme-copper oxidases could be obtained in either electrometric or spectrophotometric measurements of cytochrome bd oxidation or in a spectrophotometric study of the reaction of H(2)O(2) with the oxidized enzyme. Backflow of electrons upon flash photolysis of the singly reduced CO complex of cytochrome bd leads to transient generation of a delta psi of the opposite polarity (positive inside the vesicles) concurrent with electron flow from heme d to heme b(558) and backward. The amplitude of the delta psi produced by the backflow process, when normalized to the reaction yield, is close to that observed in the direct reaction during the reaction of fully reduced cytochrome bd with O(2) and is apparently associated with full transmembrane translocation of approximately one charge.  相似文献   

17.
The gram-positive endospore-forming bacterium Bacillus subtilis has, under aerobic conditions, a branched respiratory system comprising one quinol oxidase branch and one cytochrome oxidase branch. The system terminates in one of four alternative terminal oxidases. Cytochrome caa(3) is a cytochrome c oxidase, whereas cytochrome bd and cytochrome aa(3) are quinol oxidases. A fourth terminal oxidase, YthAB, is a putative quinol oxidase predicted from DNA sequence analysis. None of the terminal oxidases are, by themselves, essential for growth. However, one quinol oxidase (cytochrome aa(3) or cytochrome bd) is required for aerobic growth of B. subtilis strain 168. Data indicating that cytochrome aa(3) is the major oxidase used by exponentially growing cells in minimal and rich medium are presented. We show that one of the two heme-copper oxidases, cytochrome caa(3) or cytochrome aa(3), is required for efficient sporulation of B. subtilis strain 168 and that deletion of YthAB in a strain lacking cytochrome aa(3) makes the strain sporulation deficient.  相似文献   

18.
19.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

20.
The coxII/coxIII operon of Rhodobacter sphaeroides cytochrome c oxidase has been sequenced and characterized by insertional inactivation/complementation analysis. The organization of the genes in this locus (coxII.orf1.orf3.coxIII) is the same as that of the equivalent operon of Paracoccus denitrificans (ctaC.ctaB.ctaG.ctaE), but unlike that of other bacteria whose cytochrome oxidase genes have been characterized so far. The predicted amino acid sequence homology with eukaryotic oxidases is also higher for Rb. sphaeroides (and P. denitrificans) than for other bacterial versions of the enzyme. The inactivation of coxII results in loss of the characteristic cytochrome oxidase spectrum from membranes of the mutant strain. Full recovery requires introduction into the bacterium of the complete operon containing coxII.orf1.orf3.coxIII; partial complementation yielding a spectrally altered enzyme is achieved with a plasmid containing coxII or coxII.orf1.orf3. These results indicate that the peptides ORF1, ORF3, and COXIII are all required for assembly of native cytochrome c oxidase, suggesting an oxidase-specific assembly or chaperonin function for the ORFs in Rb. sphaeroides similar to that observed for the homologous gene products in yeast, COX10 and COX11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号