首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.  相似文献   

2.
3.
4.
Structural comparison of the prokaryotic ribosomal proteins L7/L12 and L30   总被引:7,自引:0,他引:7  
The structures of two prokaryotic ribosomal proteins, the carboxyterminal half of L7/L12 from Escherichia coli (L12CTF) and L30 from Bacilus stearothermophilus display a remarkably similar fold in which alpha-helices pack onto one side of an antiparallel, three-stranded, beta-pleated sheet. A detailed comparison of the structures by least-squares methods reveals that more than two-thirds of the alpha carbons can be superimposed with a root mean square distance of 2.33 A. The principal difference is an extra alpha-helix in L12CTF. The sequences of the proteins display a distinct conservation in regions which are crucial to the common fold, in particular the hydrophobic core. It is proposed that the similarity is a result of divergent evolution.  相似文献   

5.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   

6.
7.
8.
《Molecular Biology》2011,45(4):691-692

Chronicle

On the 75th anniversary of the birth of L. L. Kiselev  相似文献   

9.
L16 exhibits both peptide bond and transesterification activities when reconstituted into 2 M LiCl core particles. L6 and L11, when reconstituted in a similar manner in the absence of L16, manifest significant transesterification activity. Both L6 and L11 enhance the transesterification activity of L16; L11 being more active than L6 in this respect. However, both L6 and L11 have minimal effect on peptide bond formation when reconstituted with L16 at concentrations more than 2.5 M equivalents. Both L6 and L11 exhibit a differential effect on transesterification. The affinity-labelling agents, like PhCH2SO2F, diisopropylfluorophosphate and ethoxyformic anhydride, have been used to explore the role of residues in peptide bond formation and transesterification. It is proposed that the Ser-Phe combination present in L16, L11 and L6 is involved in transesterification in addition to the single histidine in L16. The single histidine in L16 appears to be important in the catalysis of peptide bond formation and transesterification.  相似文献   

10.
Initiation factors, elongation factors, and release factors all interact with the L7/L12 stalk of the large ribosomal subunit during their respective GTP-dependent cycles on the ribosome. Electron density corresponding to the stalk is not present in previous crystal structures of either 50 S subunits or 70 S ribosomes. We have now discovered conditions that result in a more ordered factor-binding center in the Haloarcula marismortui (H.ma) large ribosomal subunit crystals and consequently allows the visualization of the full-length L11, the N-terminal domain (NTD) of L10 and helices 43 and 44 of 23 S rRNA. The resulting model is currently the most complete reported structure of a L7/L12 stalk in the context of a ribosome. This region contains a series of intermolecular interfaces that are smaller than those typically seen in other ribonucleoprotein interactions within the 50 S subunit. Comparisons of the L11 NTD position between the current structure, which is has an NTD splayed out with respect to previous structures, and other structures of ribosomes in different functional states demonstrates a dynamic range of L11 NTD movements. We propose that the L11 NTD moves through three different relative positions during the translational cycle: apo-ribosome, factor-bound pre-GTP hydrolysis and post-GTP hydrolysis. These positions outline a pathway for L11 NTD movements that are dependent on the specific nucleotide state of the bound ligand. These three states are represented by the orientations of the L11 NTD relative to the ribosome and suggest that L11 may play a more specialized role in the factor binding cycle than previously appreciated.  相似文献   

11.
Core particles of 50S ribosomes depleted of L7L12 proteins are degraded by RNase I at a considerably slower rate than intact 50S ribosomes. The normal rate is restored on incorporating L7L12 proteins into the core particles. The capacity of the core particles to inhibit the RNase I-catalyzed hydrolysis of poly A and to bind ethidium bromide is also greater with core particles than with intact 50S ribosomes. It appears from these results that the region(s) of rRNA in the vicinity of L7L12 proteins has less ordered structure which, on removal of L7L12 proteins, becomes more organized. Apparently, binding of L7L12 proteins to the 50S core leads to the destabilization of double-stranded regions of rRNA.  相似文献   

12.
13.
Ribosomal proteins were extracted from 50S ribosomal subunits of the archaebacterium Halobacterium marismortui by decreasing the concentration of Mg2+ and K+, and the proteins were separated and purified by ion-exchange column chromatography on DEAE-cellulose. Ten proteins were purified to homogeneity and three of these proteins were subjected to sequence analysis. The complete amino acid sequences of the ribosomal proteins L25, L29 and L31 were established by analyses of the peptides obtained by enzymatic digestion with trypsin, Staphylococcus aureus protease, chymotrypsin and lysylendopeptidase. Proteins L25, L29 and L31 consist of 84, 115 and 95 amino acid residues with the molecular masses of 9472 Da, 12293 Da and 10418 Da respectively. A comparison of their sequences with those of other large-ribosomal-subunit proteins from other organisms revealed that protein L25 from H. marismortui is homologous to protein L23 from Escherichia coli (34.6%), Bacillus stearothermophilus (41.8%), and tobacco chloroplasts (16.3%) as well as to protein L25 from yeast (38.0%). Proteins L29 and L31 do not appear to be homologous to any other ribosomal proteins whose structures are so far known.  相似文献   

14.
The sequence of the amino-terminal region of eleven rat liver ribosomal proteins–S4, S6, S8, L7a, L18, L27, L30, L37a, and L39 - was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.  相似文献   

15.
16.
The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13538, 16812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.  相似文献   

17.
18.
L Giri  A Franz  J Dijk 《Biochemistry》1979,18(12):2520-2525
Proteins L1, L9, L25, and L30, purified by a nondenaturing method from the 50S ribosomal subunit of Escherichia coli A19, have been characterized. The four proteins were studied under conditions which resemble those used for reconstitution experiments. These proteins have S020,W values of 2.0 S, 1.8 S, 1.8 S, and 1.0 S and D20,W values of 8.4 X 10(-7), 9.0 X 10(-7), 14.0 X 10(-7), and 15.0 X 10(-7) cm2/S. Apparent specific volumes at 20 degrees C are 0.738, 0.733, 0.700, and 0.735 mL/g for the four proteins. The respective molecular weights determined by sedimentation equilibrium are 25 000, 17 300, 12 000, and 6500. The intrinsic viscosity values for the four proteins are 4.0, 5.5, 3.6, and 3.2 mL/g. From these hydrodynamic parameters L1 and L9 appear to have globular or at most only slightly elongated shapes, whereas L25 and L30 appear to be definitely globular.  相似文献   

19.
The extracellular hemoglobin (Hb) of the earthworm, Lumbricus terrestris, has four major kinds of globin chains: a, b, c, and d, present in equimolar proportions, and additional non-heme, non-globin scaffolding chains called linkers that are required for the calcium-dependent assembly of the full-sized molecule. The amino acid sequences of all four of the globin chains and one of the linkers (L1) have previously been determined. The amino acid sequences via cDNA of each of the three remaining linkers, L2, L3, and L4, have been determined so that the sequences of all constituent polypeptides of the hemoglobin are now known. Each linker has a highly conserved cysteine-rich segment of approximately 40 residues that is homologous with the seven ligand-binding repeats of the human low-density lipoprotein receptor (LDLR). Analysis of linker L1 shows that the connectivity of the three disulfide bonds is exactly the same as in the LDLR ligand-binding repeats. The presence of a calcium-binding site comprising one glutamyl and three aspartyl residues in both the LDLR repeats and in the linkers supports the suggestion that calcium is required for the folding and disulfide connectivity of the linkers as in the LDLR repeats. Linker L2 is markedly heterogeneous and contains unusual glycine-rich sequences near the NH2-terminus and a polar zipper-like sequence with imperfect repeats of Asp-Asp-His at the carboxyl terminus. Similar Asp-Asp-His repeats have been found in a protein homologous to superoxide dismutase in the hemolymph of certain mussels. These repeats may function as metal-binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号