首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Differentiation of human embryonic stem (ES) cells and embryonal carcinoma (EC) cells provides an in vitro model to study the process of neuronal differentiation. Retinoic acid (RA) is frequently used to promote neural differentiation of pluripotent cells under a wide variety of culture conditions. Through systematic comparison of differentiation conditions we demonstrate that RA induced neuronal differentiation of human ES and EC cells requires prolonged RA exposure and intercellular communication mediated by high cell density. These parameters are necessary for the up-regulation of neural gene expression (SOX2, PAX6 and NeuroD1) and the eventual appearance of neurons. Forced over-expression of neither SOX2 nor NEUROD1 was sufficient to overcome the density dependency of neuronal differentiation. Furthermore, inhibition of GSK3β activity blocked the ability of RA to direct cell differentiation along the neural lineage, suggesting a role for appropriately regulated WNT signalling. These data indicate that RA mediated neuronal differentiation of human EC and ES cell lines is not a cell autonomous program but comprises of a multi-staged program that requires intercellular input.  相似文献   

8.
9.
10.
11.
F9 embryonic carcinoma (EC) cells undergo extra-embryonic endodermal (ExE) differentiation in response to retinoic acid (RA) treatment, which induces the expression of two isoforms (p96 and p67) of the adaptor protein, Disabled-2 (Dab2). In the current study, constitutive and ectopic expression of the p96 isoform induced ExE differentiation in F9 EC cells in the absence of RA treatment via the activation of GATA-4 by p96. During the RA-induced differentiation process, Dab2 expression is induced by the GATA factors in a coherent feed-forward loop; on the other hand, we showed that p96 regulates GATA-4 in a positive feed-back manner in this study. Our results indicate that p96 Dab2 plays a key role in the ExE differentiation process.  相似文献   

12.
13.
Whereas retinoid acid (RA) signaling has been implicated in embryonic heart development, its significance in differentiation of specific cardiac subtypes remains largely unknown. In the present study, we took advantage of lineage-specific expression of atrial natriuretic peptide (ANP) in embryonic stem (ES) cells to study RA-induced effects on differentiation of atrial- and pacemaker-like phenotypes. Embryoid bodies (EB) were exposed to 10(-5), 10(-7), and 10(-9) M RA at early (days 1-5 [d1-5]) and late (d6-10) developmental stages, and RA effects on expression of lineage-specific cardiac markers and ion channels were examined. Our initial experiments revealed a detrimental effect of 10(-5) M RA on EB development by inducing marked apoptosis. Morphologic and expression analysis demonstrated that 10(-7) M RA applied at d1-5 was most effective to induce the atrial sublineage. RA did not affect differentiation of pacemaker-like cells, independent of RA concentration and application time. Conversely, RA exposure at an early developmental stage inhibited ventricular-specific MLC-2v gene expression. Late-stage RA administration exhibited no significant alterations in cardiomyogenic differentiation. Terminally differentiated cardiomyocytes exposed to RA at d1-5 or d6-10 displayed unchanged I(Ca,L) and I(to) channel expression compared with untreated cells. However, patch clamp studies revealed a significant increase of I(Ca,L) and I(to) current densities associated with increased levels of the underlying channel subunits in 6-7-day-old cardiomyocytes upon early RA exposure. In contrast, I(f) current density and HCN4 expression remained largely unaffected by RA. Our results imply that RA induces differentiation of ANP-expressing EBs toward an atrial phenotype in a time- and concentration-dependent manner and accelerates expression of I(Ca,L) and I(to) ion channels without affecting differentiation of pacemaker cells.  相似文献   

14.
15.
16.
Gab proteins amplify and integrate signals stimulated by many growth factors. In culture and animals, retinoic acid (RA) induces neuronal differentiation. We show that Gab2 expression is detected in neurons in three models of neuronal differentiation: embryonic carcinoma (EC) stem cells, embryonic stem cells, and primary neural stem cells (NSCs). RA treatment induces apoptosis, countered by basic FGF (bFGF). In EC cells, Gab2 silencing results in hypersensitivity to RA-induced apoptosis and abrogates the protection by bFGF. Gab2 suppression reduces bFGF-dependent activation of AKT but not ERK, and constitutively active AKT, but not constitutively active MEK1, reverses the hypersensitization. Thus, Gab2-mediated AKT activation is required for bFGF's protection. Moreover, Gab2 silencing impairs the differentiation of EC cells to neurons. Similarly, in NSCs, Gab2 suppression reduces bFGF-dependent proliferation as well as neuronal survival and production upon differentiation. Our findings provide the first evidence that Gab2 is an important player in neural differentiation, partly by acting downstream of bFGF to mediate survival through phosphoinositide 3 kinase-AKT.  相似文献   

17.
Experimentation with PBX1 knockout mice has shown that PBX1 is necessary for early embryogenesis. Despite broad insight into PBX1 function, little is known about the underlying target gene regulation. Utilizing the Cre–loxP system, we targeted a functionally important part of the homeodomain of PBX1 through homozygous deletion of exon-6 and flanking intronic regions leading to exon 7 skipping in embryonic stem (ES) cells. We induced in vitro differentiation of wild-type and PBX1 mutant ES cells by aggregation and retinoic acid (RA) treatment and compared their profiles of gene expression at the ninth day post-reattachment to adhesive media. Our results indicate that PBX1 interactions with HOX proteins and DNA are dispensable for RA-induced ability of ES to express neural genes and point to a possible involvement of PBX1 in the regulation of imprinted genes.  相似文献   

18.
19.
20.
近年来,鸟氨酸脱羧酶抗酶(OAZ)作为肿瘤治疗的潜在靶点备受关注.本文研究了OAZ1基因过表达对慢粒白血病K562细胞红系分化的作用.构建框移位点突变的OAZ1 过表达慢病毒载体pLVX-Neo-OAZ1-IRES-ZsGreen,包装病毒并感染K562细胞, Western 印迹验证其过表达效果.FACS检测细胞分化标志物CD71和GPA,结合联苯胺染色分析细胞红系分化情况.对比氯化高铁血红素(hemin)诱导组,实时RT-PCR检测与K562细胞红系分化、癌变的关键基因(GATA1、BCR/ABL、TGFβ)转录水平,对OAZ1 诱导分化的机制进行初步探索.结果表明,慢病毒过表达载体及K562细胞过表达体系构建成功.OAZ1过表达后细胞红系分化标志物CD71+/GPA+为(11.22±2.09)%,与对照组(4.07±1.04)%、空病毒组(1.79±2.36)%相比差异极显著(P<0.01);联苯胺蓝染阳性率为(14.037±0.083)%,与对照组、空病毒组比较,差异也极显著(P<0.01).定 量分析结果提示,相对于GATA1、BCR/ABL 基因mRNA转录水平的影响,OAZ1对TGFβ 基因的作用更为明显.为此推断,OAZ1基因可诱导白血病K562细胞向成熟红系方向分化,其作用机制可能与TGFβ信号转导通路相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号