首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A Comparative Study Was Made Of The Fine Structure of Cladonia Cristatella and its algal Symbiont Trebouxia Erici in their lichenized and cultured ( nonlichenized) states. Pyrenoglobuli were produced by the alga in the symbiotic and free conditions. Starch was formed during hydrated conditions. Pyrenoglobbuli migrated to the outer parts of the pyrenoid only during dry periods. Dictyosomes and eyespots were observed for the first time in Trebouxia. The pyrenoid divided by fragmentation. Ellipsoidal bodies were common in the hyphae of the lichenized fungus and absent in cultured hyphae, except for 1 colony which had been induced to form pycnidia. The ellipsoidal bodies were associated closely with the internal membrane system of the mycobiont. Haustoria seemed to penetrate the algal cells by enzymatic digestion. Intrahyphal hyphae were common.  相似文献   

2.
R. Honegger  M. Peter  S. Scherrer 《Protoplasma》1996,190(3-4):221-232
Summary Cryotechniques, such as low temperature scanning electron microscopy (LTSEM) and freeze-substitution for transmission electron microscopy (TEM), were applied to two cyanobacterial and three green algal macrolichens in order to locate free water and to visualize drought-induced structural alterations at the mycobiont—photobiont interface. The following species were examined:Peltigera canina/Nostoc punctiforme, Sticta sylvatica/Nostoc sp. (both Peltigerales),Parmelia sulcata/Trebouxia impressa, Hypogymnia physodes/Trebouxia sp. (both Lecanorales), andXanthoria parietina/Trebouxia arboricola (Teloschistales). In all species free water was confined to the symplast and the apoplast. No intercellular water reservoirs were found in the gas-filled thallus interior. Thalline fluctuations in water content reflect fluctuations in apoplastic and symplastic water. All the taxonomically diverse lichen photobionts have access to water and dissolved nutrients via the fungal apoplast only. Drought stress (i.e., water content 20%/dw and below) caused dramatic shrinkage and deformation in all cell types. At any level of hydration the fungal and algal protoplast maintained close contact with the cell wall. This applied to the cyanobacterial photobionts and their murein sacculus and gelatinous sheath too. Although the cytoplasm of both partners was strongly condensed in desiccated lichens the cellular membrane systems, usually negatively contrasted, were very well preserved. The significance of these data is discussed with regard to the functioning of the symbiotic relationship.  相似文献   

3.
Exposure to high light induced a quantitatively similar decrease in the rate of photosynthesis at limiting photon flux density (PFD) and of photosystem II (PSII) photochemical efficiency, FV/FM, in both green and blue-green algal lichens which were fully hydrated. Such depressions in the efficiency of photochemical energy conversion were generally reversible in green algal lichens but rather sustained in blue-green algal lichens. This greater susceptibility of blue-green algal lichens to sustained photoinhibition was not related to differences in the capacity to utilize light in photosynthesis, since the light-and CO2-saturated rates of photosynthetic O2 evolution were similar in the two groups. These reductions of PSII photochemical efficiency were, however, largely prevented in lichen thalli which were fully desiccated prior to exposure to high PFD. Thalli of green algal lichens which were allowed to desiccate during the exposure to high light exhibited similar recovery kinetics to those which were kept fully hydrated, whereas bluegreen algal lichens which became desiccated during a similar exposure exhibited greatly accelerated recovery compared to those which were kept fully hydrated. Thus, green algal lichens were able to recover from exposure to excessive PFDs when thalli were in either the hydrated or desiccated state during such an exposure, whereas in blue-green algal lichens the decrease in photochemical efficiency was reversible in thalli illuminated in the desiccated state but rather sustained subsequent to illumination of thalli in the hydrated state.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM maximum yield of fluorescence induced by pulses of saturating light - FV variable yield of fluorescence - PFD photon flux density (400–700 nm) - PSII photosystem II This work was supported by the Deutsche Forschungsgeneinschaft (Forscherguppe Ökophysiologic and Sonderforschungsbereich 251 of the University of Würzburg) and the Fonds der Chemischen Industrie. W.W.A. gratefully acknowledges the support of a fellowship from the Alexander von Humboldt Foundation. We thank Professor T.G.A. Green for identifying and supplying all of the New Zealand lichen material and Professor F.-C. Czygan for advice concerning the chlorophyll analyses which were performed by Johanna Leisner.  相似文献   

4.
Abstract: Lichen-forming ascomycetes and their green algal photobionts completely die off within approximately 3 years of storage at room temperature. Macroscopically this is recognizable as a colour change, the green shades of the chlorophylls being lost. In fluorescent light microscopy preparations an increase in fungal autofluorescence and a significant decrease in chlorophyll autofluorescence in the Trebouxia cells was observed. In transmission electron microscopy preparations of Xanthoria parietina and its green algal photobiont, Trebouxia arboricola, the fungal membrane systems were found to be largely broken down whereas the shrivelled algal protoplast failed to rehydrate after storage at room temperature. When stored in the desiccated state at - 20 °C, both partners of the symbiosis stayed fully viable for up to 13 years, their colouration and chlorophyll fluorescence being unchanged. Viability was measured as ascospore ejection and germination rates in Xanthoria parietina, soredium germination rates in Xanthoria fallax, Hypogymnia physodes and Parmelia sulcata, and autospore formation rate in Trebouxia cells (green algal photobiont), which had been isolated from the thalli after rehydration. Thallus fragments of Xanthoria parietina were shown to grow normally after one week of storage in LN2 without any cryoprotectant. In the desiccated state deep-frozen samples can be repeatedly brought to room temperature and back to - 20 °C without any loss of viability. Cryopreservation is therefore a suitable mode of long-term storage of viable lichen thalli for experimental studies or transplant experiments.  相似文献   

5.
A combination tapetum consisting of a cellular, parietal component and a plasmodial component occurs inSchizaea pectinata. A single, tapetal initial layer divides to form an outer parietal layer which maintains its cellular integrity until late in spore wall development. The inner tapetal layer differentiates into a plasmodium which disappears after the outer exospore has developed. In the final stages of spore wall development, granular material occurs in large masses and is dispersed as small granules throughout the sporangial loculus. No tapetal membrane develops. Comparisons are drawn with the combination tapetum found inPsilotum nudum.  相似文献   

6.
The carotenoid composition of 33 species of green algal lichens and 5 species of blue-green algal lichens was examined and compared with that of the leaves of higher plants. As in higher plants, green algal lichen species which were found in both shade and full sunlight exhibited higher levels of the carotenoids involved in photoprotective thermal energy dissipation (zeaxanthin as well as the total xanthophyll cycle pool) in the sun than in the shade. This was particularly true when thalli were moist during exposure to high light, or presumably became desiccated in full sunlight. However, the reverse trend in the carotenoid composition of green algal lichens was also observed in those species which were found predominantly either in the shade or in full sunlight. In this case sun-exposed lichens often possessed lower levels of zeaxanthin and of the components of the xanthophyll cycle than lichens which were found in the shade. In contrast to higher plants, the lichens from all habitats exhibited a relatively high ratio of carotenoids to chlorophylls (more characteristic of sun leaves), very low levels of α-carotene (similar to that found in sun leaves), and a level of β-carotene similar to that found in shade leaves. Zeaxanthin, but not the expoxides of the xanthophyll cycle, was also frequently found in blue-green algal lichens. A trend for increasing levels of zeaxanthin with increasing growth light regime was observed inPeltigera rufescens, the species which was found to occur over the widest range of light environments. The level of zeaxanthin per chlorophylla in these blue-green algal lichens was in a range similar to that per chlorophylla+b in green algal lichens. However, zeaxanthin was also absent in one species,Collema cristatum, in full sunlight. Thus, the zeaxanthin content of the blue-green algal lichens can be similar to that of higher plants, or it can be rather dissimilar, as was also the case in the green algal lichen species. The presence of large amounts of ketocarotenoids in blue-green algal lichens is also noteworthy.  相似文献   

7.
Structural modifications of the phycobiont in the lichen thallus   总被引:1,自引:0,他引:1  
Summary Modifications in the fine structure of the algal component of two lichens,Aspicilia sp. andSquamarina crassa v.crassa, have been studied. It has been pointed out that fungal penetration is not essential for the mutual relationship between the two symbionts of the lichen thallus. The structural changes taking place during the life cycle of the phycobiont of the two lichens examined are not a response to fungal invasion.Careful examinations of serial sections revealed an interesting correlation between the growth pattern of the thallus and the distribution of the algal cells in the algal layer.Grateful acknowledgement is made to the Israel National Academy of Science for the support of this work.  相似文献   

8.
SYNOPSIS. Eimeria ochrogasteri n. sp. (Coccidia, Eimeriidae) from a prairie vole Microtus ochrogaster (Rodentia, Cricetidae) is described. This is the first recorded coccidium in prairie voles. Sporulated oocysts spherical to ellipsoidal, mean 24.0 by 20.5 μ. Oocyst wall double, outer layer thick, yellow-brown, deeply pitted, inner layer clear. Oocyst residuum varies from many small globules to a coalesced group of large and/or small globules. Polar granule present. Micropyle absent. Sporocysts ovoid with “capped” Stieda body, mean 12.3 by 8.2 μ. Sporocyst residuum present. Sporozoites average 14.9 by 2.9 μ with spherical anterior and oblong posterior refractile globules. This species was found in 1 of 71 voles from Weld county, Colorado.  相似文献   

9.
The ultrastructure of the lichen Physcia aipolia was studied in the desiccated and hydrated states. No significant structural variation between these 2 states was noted for the fungus. The fungus contains unusual ellipsoidal structures heretofore unobserved. Their possible role in the formation of membrane is discussed. The plasmalemma of the fungus is convoluted while that of the alga is smooth. The convoluted projections have a “double-unit membrane” structure similar to fingerlike projections of the ellipsoidal bodies. With OsO4 fixation crystals are pre-served, enclosed in unit membrane sacs which extend to the convoluted surface. The pyrenoid of the associated alga does not produce starch in the desiccated condition, and electron-dense granules are present in the matrix associated with chloroplast lamellae which enter this area. In the hydrated condition, the alga contains abundant starch in the pyrenoid region, and the electron-dense granules are displaced to the preriphery of the pyrenoid starch. Mitochondria, endo-plasmic reticulum, and ribosomes are not clearly defined in the desiccated state while they are more so in the hydrated condition. Golgi bodies were not observed in the either lichen component. Finally, no fine structural basis for indicating an exchanged of materials between the alga and fungus was observed except, possibly, the convoluted plasmalemma of the fungus and the smooth plasmalemma of the alga.  相似文献   

10.
Use of light, transmission, and scanning electronmicroscopes revealed that the epidermal cell wall ofthe red algal agarophytes Gracilaria tikvahiaeMcLachlan and G. cornea J. Agardh consists of adecklamelle and outer and inner wall layers. The twospecies differed, with G. cornea having asignificantly thicker outer wall and a more diffusedecklamelle. After induction, the zooids of Ulvalactuca would attach to glass slides and the twospecies of Gracilaria via an adhesion pad. Within a few days, 3–5 celled germlings penetrated thedecklamelle and outer wall layer of both basiphytes. By the time the epiphyte germlings reached the 15celled stage, they had penetrated the inner walllayer. The differences in epidermal cell wallconstruction between the two basiphytes may play arole in the ability of zooids of U. lactuca toattach in nature where epiphytization of G.cornea is infrequent.  相似文献   

11.
The pyrenoid structure of Trebouxia, a photobiont of two lichen species, Umbilicaria cinereorufescens (Schaer.) Frey and Parmelia sulcata Taylor, was investigated. In both lichen species, the pyrenoid of the photobiont exhibited straight, unbranched, long or short tubules. In the first lichen species, multiple pyrenoids were observed occasionally, while in the second one, homogeneous masses, called protein bodies, appeared between the thylakoids. These protein bodies were previously observed in some other species of the family Umbilicariaceae. Serial sections from single pyrenoids showed that tubules of the Impressa-type pyrenoid were closely associated with pyrenoglobuli. The three-dimensional reconstruction of a complete chloroplast of a P. sulcata algal cell showed that the protein bodies were spatially separate structures. Immunolocalization techniques to detect the presence of ribulose-bisphosphate carboxylase (Rubisco) in the chloroplast showed that this enzyme was present primarily in the pyrenoid matrix. When protein bodies were present in the chloroplast, Rubisco appeared to be localized in these structures. The presence of pyrenoid satellites and protein bodies with reactivity to anti-Rubisco may be related to the nutritional conditions of the thalli.  相似文献   

12.
Sporulation inSchwanniomyces alluvius appeared to be preceded by fusion of a mother and a daughter cell. Meiosis probably occurred in the mother cell and one or two spores were formed in the latter. A study of thin sections showed that the spore wall developed from a prospore wall. The mature spore wall consisted of a broad light inner layer and a thinner dark outer layer including warts. An equatorial ledge was present. During germination in the ascus, a new light inner layer was formed and the old layers of the spore wall partly broke up. Ascospores in a strain ofS. persoonii had a different wall structure in that the dark layer had changed into light areas separated by dark material which formed bulges at the surface.  相似文献   

13.
Structure, development and histochemistry of the seed epidermiswere studied inSolanum melongena L. andS. violaceum Ort. usinglight and scanning electron microscopy. The epidermal cellsat the endosperm mother cell stage of ovule development hadthickened outer periclinal walls, consisting of two layers,a thin inner layer, and a thick outer layer. The latter whichstained positively for pectic substances became further thickenedduring the course of seed development; more so inS. melongena.The inner layer of the outer periclinal wall also was thickenedby depositions of cellulose but remained comparatively thin.The development of the inner periclinal and anticlinal wallstook place by the uneven deposition of concentric layers. Thesesecondary wall thickenings which appeared as pyramids in transversesection stained for cellulose, lignin and pectin. Further unevensecondary thickenings near the outer part of the anticlinalwalls resulted in the formation of projections which were hair-or ribbon-like in appearance. InS. melongena, these projectionsprogressed only a short distance from the anticlinal wall. InS.violaceum, on the other hand, they grew much longer formingstriations on the inside of the outer periclinal wall. InS.melongena, partial removal of the outer periclinal wall by enzymeetching exposed to surface view a beaded appearance of the cellboundaries. Complete erosion of the outer periclinal wall revealedthe hair-like projections of the underlying anticlinal walls.InS. violaceum, enzyme treatment exposed the striations whichformed bridge-like structures over the curves in the anticlinalwalls. Solanum melongena ; Solanum violaceum; seed epidermis; seed structure; seed development; cell wall histochemistry; cell wall projections; cell wall striations  相似文献   

14.
Thallus organization is examined inAspicilia californicaRosentreter, a fruticose lichen known from several localities in central and southern California. The sprawling, terete thallus branches possess a dense central medulla of thick-walled, longitudinally oriented fungal cells. This central tissue emerges at branch apices to form a darkly pigmented fungal tip. Thallus development involves the apical extension of the tip to produce a fungal tissue over which a cylindrical algal layer and cortex will eventually be formed. Apical branches are initiated by furcation entirely within the fungal tip. Lateral branches, emerging from the lichenized thallus, arise as a divergent bundle of elongate fungal cells originating in the medulla. The photobiont appears to play no direct role in initiation of apical or lateral branches. It is concluded that thallus development inA. californicaoccurs with a relatively low degree of synchrony between mycobiont and photobiont growth, similar to the pattern observed in crustose lichens with prothallic growth. A rather similar type of thallus organization is observed inA. hispida, although in that species mycobiont growth and branch initiation appear to be somewhat more closely associated with algal cell proliferation. A squamuloseAspiciliafrom central Spain produces rhizomorphs that may sometimes become invested with an algal layer and cortex, resembling the thallus axes ofA. californica.  相似文献   

15.
The bright yellow wall lichen, Xanthoria parietina , is usually inhabited by oribatid mites (Acari) which do not only find shelter, but also graze on selected areas of the thallus. As X. parietina does not produce symbiotic vegetative propagules and its compatible photobiont, unicellular green algae of the genus Trebouxia , are rare outside lichen thalli, we tested the hypothesis of dispersal of viable Trebouxia cells via acarine faeces. The lichenivorous mites, Trhypochtonius tectorum and Trichoribates trimaculatus , were isolated from thalli of X. parietina and cultured in the laboratory on a lichen diet. Light microscopic investigations of faecal pellets from mites that had been feeding on X. parietina indicated gut passage of intact ascospores and photobiont cells. In a series of experiments, viable algal and fungal cells contained in such faecal pellets were cultured. The taxonomic affiliation of these isolates was identified using molecular techniques, i.e. comparative investigations of nuclear ribosomal gene data (ITS 1 and 2, 5.8S rDNA) in the algal and fungal partners, and of the species-specific hydrophobin gene sequence in the fungal partner. Our culturing experiments demonstrated that the faecal pellets of both lichenivorous mites, upon feeding on X. parietina , contain viable ascospores and photobiont cells ( Trebouxia arboricola ) and thus might be a common and successful mode of vegetative short- and long-distance dispersal of this and numerous other lichen-forming ascomycetes and their photobionts. Future studies will have to elucidate the evolutionary significance of invertebrate interactions with lichens. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 259–268.  相似文献   

16.
The spore wall of Andreaea rothii (Andreaeopsida) is unique among mosses studied by transmission electron microscopy. The exine of other mosses is typically initiated on trilaminar structures of near unit membrane dimensions just outside the plasma membrane. The exine of Andreaea is initiated in the absence of such structures as discrete globules within the coarsely fibrillar network of the sporocyte wall. The sequence of wall layer development, nevertheless, is essentially like that of other mosses. The intine is deposited within the exine and the perine accumulates on the surface of the exine during the latter stages of spore maturation. The mature spore is weakly trilete and inaperturate. The wall consists of three layers, the inner intine, the spongy exine consisting of loosely compacted irregular globules of sporopollenin, and an outer layer of perine. The perine differs ultrastructurally from the exine only in its greater degree of electron opacity. This ultrastructural evidence of departure from the fundamental pattern of exine development in mosses supports the taxonomic isolation of Andreaea from mosses of the Sphagnopsida and Bryopsida.  相似文献   

17.
The germination of sporangia inCoelomomyces psorophorae vartasmaniensis (C. p. tas.) is uncoordinated and thus there is a mixture of developmental stages in any given population. Continuous urografin gradients separated out the critical stages of germinating sporangia giving four bands, each band representing a consecutive stage of germination. These stages were investigated for changes in the sporangial wall using Transmission Electron Microscopy (TEM). The sporangia have a typical two-layered wall, an electron dense outer layer which can be divided into three distinct sub-layers D1, D2, and D3 and an inner electron transparent secondary wall. Stage 3 sporangia have an intact D1 layer on their outer wall. In the subsequent stages (4 & 4b) there is a progressive breakdown of this layer.  相似文献   

18.
We tested the hypothesis that lichen species with a photosynthetic CO2-concentrating mechanism (CCM) use nitrogen more efficiently in photosynthesis than species without this mechanism. Total ribulose bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) and chitin (the nitrogenous component of fungal cell walls), were quantified and related to photosynthetic capacity in eight lichens. The species represented three modes of CO2 acquisition and two modes of nitrogen acquisition, and included one cyanobacterial ( Nostoc ) lichen with a CCM and N2 fixation, four green algal ( Trebouxia ) lichens with a CCM but without N2 fixation and three lichens with green algal primary photobionts ( Coccomyxa or Dictyochloropsis ) lacking a CCM. The latter have N2-fixing Nostoc in cephalodia. When related to thallus dry weight, total thallus nitrogen varied 20-fold, chitin 40-fold, Chl a 5-fold and Rubisco 4-fold among the species. Total nitrogen was lowest in three of the four Trebouxia lichens and highest in the bipartite cyanobacterial lichen. Lichens with the lowest nitrogen invested a larger proportion of this into photosynthetic components, while the species with high nitrogen made relatively more chitin. As a result, the potential photosynthetic nitrogen use efficiency was negatively correlated to total thallus nitrogen for this range of species. The cyanobacterial lichen had a higher photosynthetic capacity in relation to both Chl a and Rubisco compared with the green algal lichens. For the range of green algal lichens both Chl a and Rubisco contents were linearly related to photosynthetic capacity, so the data did not support the hypothesis of an enhanced photosynthetic nitrogen use efficiency in green-algal lichens with a CCM.  相似文献   

19.
Lichens from the genus Umbilicaria were collected across a 5,000-km transect through Antarctica and investigated for DNA sequence polymorphism in a region of 480-660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. Sequences from both fungal (16 ascomycetes) and photosynthetic partners (22 chlorophytes from the genus Trebouxia) were determined and compared with homologs from lichens inhabiting more temperate, continental climates. The phylogenetic analyses reveal that Antarctic lichens have colonized their current habitats both through multiple independent colonization events from temperate embarkation zones and through recent long-range dispersal in the Antarctic of successful preexisting colonizers. Furthermore, the results suggest that relichenization-de novo establishment of the fungus-photosynthesizer symbiosis from nonlichenized algal and fungal cells-has occurred during the process of Antarctic lichen dispersal. Independent dispersal of algal and fungal cultures therefore can lead to a successful establishment of the lichen symbiosis even under harsh Antarctic conditions.  相似文献   

20.
The ultrastructure of the Conchocelis or filamentous stage of Porphyra leucosticta was investigated. Each cell contains 1 or 2 parietal, stellate chloroplasts with a single pyrenoid in each chloroplast. The centrally located nucleus is irregularly shaped and contains 1–2 nucleoli. The cytoplasm has typical floridean starch grains and nonmernbrane-bound lipid bodies. The cell wall is divided into an outer and an inner wall. Many lomasomes are associated with the cell membrane. Pit connections are found between cells, and their taxonomic significance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号