首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA clone, named ppmMDH-1 and covering a part of the porcine mitochondrial malate dehydrogenase (mMDH; L-malate:NAD+ oxidoreductase, EC 1.1.1.37) mRNA, was isolated from a porcine liver cDNA library with a mixture of 24 oligodeoxyribonucleotides as a probe. The sequences of the probe were deduced from the known sequence of porcine mMDH amino acid residues 288-293. ppmMDH-1 covered the coding region for porcine mMDH amino acid residues 17-314 and the 3' untranslated region. Subsequently, mouse mMDH cDNA clones were isolated from a mouse liver cDNA library with the ppmMDH-1 cDNA as a probe. One of the clones, named pmmMDH-1 and containing a cDNA insert of about 1350 base pairs, was selected for sequence analysis, and the primary structure of the mouse precursor form of mMDH (pre-mMDH) was deduced from its cDNA sequence. The sequenced coding regions for the porcine and mouse mMDH mRNAs showed about 85% homology. When the deduced amino acid sequence of the mouse pre-mMDH was compared with that of the porcine mMDH, they shared a 95% homology, and the mouse pre-mMDH yielded a leader sequence consisting of 24 amino acid residues and a mature mMDH, consisting of 314 amino acid residues. The leader sequence contained three basic amino acid residues, no acidic residues, and no hydrophobic amino acid stretch. The mouse mMDH leader sequence was compared with those of three other rodent mitochondrial matrix proteins.  相似文献   

2.
We have isolated and sequenced cDNA clones corresponding to the entire coding sequences of the human lysosomal membrane glycoproteins, lamp-1 and lamp-2 (h-lamp-1 and h-lamp-2). The deduced amino acid sequences indicate that h-lamp-1 and h-lamp-2 consist of 416 and 408 amino acid residues, respectively, and suggest that 27 and 28 NH2-terminal residues are cleavable signal peptides. The major portions of both h-lamp-1 and h-lamp-2 reside on the luminal side of the lysosome and are heavily glycosylated by N-glycans: h-lamp-1 and h-lamp-2 were found to contain 19 and 16 potential N-glycosylation sites, respectively. The findings are consistent with the results obtained by endo-beta-N-acetylglucosaminidase F treatment of h-lamp-1 and h-lamp-2 precursors, described in the preceding paper (Carlsson, S. R., Roth, J., Piller, F., and Fukuda, M. (1988) J. Biol. Chem. 263, 18911-18919). These N-glycosylation sites are clustered into two domains separated by a hinge-like structure enriched with proline and serine in h-lamp-1 or proline and threonine in h-lamp-2. The two domains of h-lamp-1 on each side of the hinge region are homologous to each other, whereas no such homology was detected between the two domains of h-lamp-2. Both proteins have one putative transmembrane domain consisting of 24 hydrophobic amino acids near the COOH terminus, and contain a short cytoplasmic segment composed of 11 amino acid residues at the COOH-terminal end. Comparison of h-lamp-1 and h-lamp-2 sequences reveal strong homology between the two molecules, particularly in the proximity to the COOH-terminal end. It is possible that this portion is important for targeting the molecules to lysosomes. These results also suggest that lamp-1 and lamp-2 are evolutionarily related. Comparison of known lamp-1 sequences among different species, on the other hand, show that human lamp-1 has more similarity to lamp-1 from other species than to human lamp-2. This fact, taken together with the finding that h-lamp-2 lacks repeating domains, suggests that lamp-1 and lamp-2 diverged from a putative ancestor gene in early stages of evolution. These results also suggest that lamp-1 and lamp-2 probably have distinctly separate functions despite the fact that they share many structural features.  相似文献   

3.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.  相似文献   

4.
Double-stranded RNA (dsRNA)-specific adenosine deaminase converts adenosine to inosine in dsRNA. The protein has been purified from calf thymus, and here we describe the cloning of cDNAs encoding both the human and rat proteins as well as a partial bovine clone. The human and rat clones are very similar at the amino acid level except at their N termini and contain three dsRNA binding motifs, a putative nuclear targeting signal, and a possible deaminase motif. Antibodies raised against the protein encoded by the partial bovine clone specifically recognize the calf thymus dsRNA adenosine deaminase. Furthermore, the antibodies can immunodeplete a calf thymus extract of dsRNA adenosine deaminase activity, and the activity can be restored by addition of pure bovine deaminase. Staining of HeLa cells confirms the nuclear localization of the dsRNA-specific adenosine deaminase. In situ hybridization in rat brain slices indicates a widespread distribution of the enzyme in the brain.  相似文献   

5.
A method has been devised for the rapid isolation of malate dehydrogenase isoenzymes. First, anionic proteins were precipitated with polyethyleneimine, whilst hydrophobic malate dehydrogenase remained in the supernatant fluid. Secondly, the supernatant was 30% saturated with ammonium sulfate and the two isoenzymes were separated by hydrophobic phenyl-Sepharose CL-4B chromatography. For further purification the enzymes were chromatofocused, and polybuffer was removed by hydrophobic chromatography. Affinity chromatography with blue Sepharose CL-6B [1] was used as final purification step. The purified isoenzymes were homogeneous as shown by isoelectric focusing and could be used for N-terminal sequencing. 34 amino acid residues could be identified for the cytoplasmic isoenzyme and 56 amino acid residues for the mitochondrial isoenzyme. Although there are regions of strong homology between both isoenzymes, the sequence differences clearly showed support that both isoenzymes are coded by different genes. Sequence comparison clearly indicated that the N-terminus of the cytoplasmic enzyme extended that of the mitochondrial enzyme by 12 amino acid residues. The amino acid sequence of the extending sequence resembled that of leading sequences known for enzymes which are transported into the mitochondria. The assumed leading sequence is discussed with respect to its possible role in glucose inactivation.  相似文献   

6.
7.
  • 1.1. Complementary DNA encoding cytosolic aspartate aminotransferase was isolated from an adult bovine heart library.
  • 2.2. The amino add sequence deduced for the protein (412 amino acids) is extremely similar (> 94% identity) to that of porcine cytosolic aspartate aminotransferase but interesting differences were noticed comparing the position of cysteine residues.
  相似文献   

8.
cDNA sequences of malate dehydrogenase (MDH) were cloned from various species, and MDH was identified to play an important role in cell energy metabolism. Here, we present the isolation and characterization of its homologue (OscMDH) in Oryza sativa. Comparison of the results to the genome details indicated that OscMDH consisted of seven exons. Sequence alignment showed that the deduced amino acid sequence of OscMDH shared a significant similarity with cMDH protein in Zea mays, as well as with other cMDH gene products. The different expression patterns of OscMDH in different tissues revealed that OscMDH mRNA was highly transcribed in either young panicle or immature seed, while its abundance was much low in green leaf and root. A nearly 56-kDa fusion protein generated by adding a Trx-His-tag at the N-terminal of OscMDH was induced by IPTG in Escherichia coli BL21 and an obvious MDH activity was detected in the protein by native PAGE analysis. All these results suggest that OscMDH encodes a cytosolic MDH in rice.  相似文献   

9.
10.
Inosine-5'-monophosphate dehydrogenase, a key enzyme in the regulation of guanine nucleotide biosynthesis, was purified to homogeneity; and a polyclonal antibody directed against the purified protein was used to isolate human and Chinese hamster IMP dehydrogenase cDNA clones. These clones were sequenced and found to contain an open reading frame of a protein containing 514 amino acids. A sequence of 35 amino acids obtained by analysis of the purified protein is identical to a segment of the protein sequence deduced from the IMP dehydrogenase cDNA. The molecular mass of the deduced protein is 56 kDa, which is the observed molecular mass of the purified protein and of the immunoprecipitated in vitro translation product. Comparison of the protein sequences deduced from the human and Chinese hamster cDNA clones indicates only eight amino acid differences, suggesting that IMP dehydrogenase is a highly conserved protein.  相似文献   

11.
12.
We have determined the complete sequence of the rat mitochondrial malate dehydrogenase (mMDH) precursor derived from nucleotide sequence of the cDNA. A single synthetic oligodeoxynucleotide probe was used to screen a rat atrial cDNA library constructed in lambda gt10. A 1.2 kb full-length cDNA clone provided the first complete amino acid sequence of pre-mMDH. The 1014 nucleotide-long open reading frame encodes the 314 residue long mature mMDH protein and a 24 amino acid NH2-terminal extension which directs mitochondrial import and is cleaved from the precursor after import to generate mature mMDH. The amino acid composition of the transit peptide is polar and basic. The pre-mMDH transit peptide shows marked homology with those of two other enzymes targeted to the rat mitochondrial matrix.  相似文献   

13.
K Fukui  F Watanabe  T Shibata  Y Miyake 《Biochemistry》1987,26(12):3612-3618
Complementary DNAs encoding D-amino acid oxidase (EC 1.4.3.3, DAO), one of the principal and characteristic enzymes of the peroxisomes of porcine kidney, have been isolated from the porcine kidney cDNA library by hybridization with synthetic oligonucleotide probes corresponding to the partial amino acid sequences. Analysis of the nucleotide sequences of two clones revealed a complete 3211-nucleotide sequence with a 5'-terminal untranslated region of 198 nucleotides, 1041 nucleotides of an open reading frame that encoded 347 amino acids, and a 3'-terminal untranslated region of 1972 nucleotides. The deduced amino acid sequence was completely identical with the reported sequence of the mature enzyme [Ronchi, S., Minchiotti, L., Galliano, M., Curti, B., Swenson, R. P., Williams, C. H. J., & Massey, V. (1982) J. Biol. Chem. 257, 8824-8834]. These results indicate that the primary translation product does not contain a signal peptide at its amino-terminal region for its translocation into peroxisomes. RNA blot hybridization analysis suggests that porcine kidney D-amino acid oxidase is encoded by three mRNAs that differ in size: 3.3, 2.7, and 1.5 kilobases. Comparison of the sequences of the two cDNA clones revealed that multiple polyadenylation signal sequences (ATTAAA and AACAAA) are present in the 3'-untranslated region, making the different mRNA species. The efficiency of 3' processing of the RNA was quite different between the two signal sequences ATTAAA and AACAAA. Southern blot analysis showed the presence of a unique gene for D-amino acid oxidase in the porcine genome.  相似文献   

14.
《Gene》1996,172(2):303-308
Using the polymerase chain reaction, DNA encoding cytosolic malate dehydrogenase (cMDH) has been cloned from a pig heart cDNA library. Large amounts of the enzyme (30 mg per litre of original culture) have been produced in Escherichia coli using an inducible expression vector (pKK223-3) in which the 5′-non-coding region of the gene was replaced with the tac promoter. The complete nucleotide sequence of the DNA is reported for the first time. The recombinant cMDH purified was shown to be identical to the native enzyme according to: chromatographic behaviour, isoelectric point, N-terminal amino acid sequence, and physicochemical and catalytic properties.  相似文献   

15.
Trypanosoma cruzi, the protozoan parasite causing Chagas disease, contains a novel aromatic alpha-hydroxy acid dehydrogenase. This enzyme is responsible, together with tyrosine aminotransferase, for the catabolism of aromatic amino acids, which leads to the excretion of aromatic lactate derivatives into the culture medium. The gene encoding the aromatic alpha-hydroxy acid dehydrogenase has been cloned through a combined approach using screening of an expression genomic library with antibodies, peptide sequencing and PCR amplification. Its sequence shows high similarity to the cytosolic malate dehydrogenases. However, the enzyme has no malate dehydrogenase activity. The gene seems to be present in a single copy per haploid genome and is differentially expressed throughout the parasite's life cycle, the highest levels being found in the insect forms of T. cruzi. The purified recombinant enzyme, expressed in Escherichia coli, was unable to reduce oxaloacetate and had kinetic constants similar to those of the natural aromatic alpha-hydroxy acid dehydrogenase. Sequence comparisons suggest that the aromatic alpha-hydroxy acid dehydrogenase derives from a cytosolic malate dehydrogenase no longer present in the parasite, made redundant by the presence of a glycosomal malate dehydrogenase as a member of a shuttle device involving the mitochondrial isoenzyme.  相似文献   

16.
The nucleotide sequence of a 1619-bp fragment of Mycobacterium bovis BCG containing the gene that encodes an alcohol dehydrogenase (ADH) has been determined. The M(r) calculated from the deduced amino acid (aa) sequence, as well as the N terminus, are in good accordance with those determined for the ADH purified from M. bovis BCG extracts. The M. bovis BCG cloned adh gene was expressed in Escherichia coli by its own promoter and the synthesized product shows ADH activity in the butane-1-ol-NADP system. Based on comparison of the aa sequence, this enzyme belongs to the zinc-containing, long-chain alcohol/polyol dehydrogenase family, which has been primarily described in eukaryotes. Of the 22 strictly conserved residues in this group, 19 are also conserved in M. bovis BCG ADH (BCGADH).  相似文献   

17.
We have isolated two metallothionein (MT) cDNA clones copied from the RNA of cadmium-resistant monkey kidney cells. The complete DNA sequences of these clones show that they encode two distinct MTs. One clone appears to represent monkey MT-II, as shown by its close homology to the human MT-II sequence, whereas the second may correspond to monkey MT-I or a related variant metallothionein. Conserved sequences were identified in both the 5′ and 3′ untranslated regions of these clones.  相似文献   

18.
1. Pig heart cytosolic malate dehydrogenase was radiolabelled with O-(4-diazo-3,5-di-[125I]iodobenzoyl)sucrose and intravenously injected into rats. Enzyme activity and radioactivity were cleared from plasma identically, with first-order kinetics, with a half-life of about 30 min. 2. The tissue distribution of radioactivity was determined at 2 h after injection. All injected radioactivity was recovered from the tissues. A high percentage of the injected dose was found in liver (37%), spleen (6%) and bone including marrow (19%). 3. Radioactivity in liver and spleen increased up to 2 h after injection and subsequently declined, with a half-life of about 20 h. 4. After differential fractionation of liver, radioactivity was largely found in the mitochondrial and lysosomal fraction. 5. Liver cells were isolated 1 h after injection of labelled enzyme. We found that Kupffer cells, endothelial cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 2725, 94 and 63 ml of plasma/day per g of cell protein respectively. 6. Radioautography indicated that in spleen and bone marrow the enzyme is mainly taken up by macrophages. 7. Internalization of the enzyme by liver, spleen and bone marrow was saturable. This indicates that the enzyme is taken up in these tissues by adsorptive endocytosis. 8. The present results closely resemble those obtained previously for the mitochondrial isoenzyme of malate dehydrogenase and for lactate dehydrogenase M4. Since those enzymes are positively charged at physiological pH, whereas cytosolic malate dehydrogenase is negative, net charge cannot be the major factor determining the rate of uptake of circulating enzymes by reticuloendothelial macrophages, as has been suggested in the literature [Wachsmuth & Klingmüller (1978) J. Reticuloendothel. Soc. 24, 227-241].  相似文献   

19.
M Emi  Y Nakamura  M Ogawa  T Yamamoto  T Nishide  T Mori  K Matsubara 《Gene》1986,41(2-3):305-310
Two cDNA clones encoding two major human trypsinogen isozymes were isolated from a human pancreatic cDNA library. The deduced amino acid (aa) sequences of the two trypsinogen precursors are found to have 89% sequence homology, and have the same number of aa (247), including 15 aa for a signal peptide and 8 aa for an activation peptide. Southern blot analysis of human genomic DNA using the cloned cDNA as a probe, revealed that the human trypsinogen genes constitute a multigene family of more than ten genes.  相似文献   

20.
The genes of the mitochondrial and cytosolic malate dehydrogenase (mMDH and cMDH) of Phytophthora infestans were cloned and overexpressed in Escherichia coli as active enzymes. The catalytic properties of these proteins were determined: both enzymes have a similar specific activity. In addition, the natural mitochondrial isoenzyme was semi-purified from mycelia and its catalytic properties determined: the recombinant mitochondrial isoform behaved as the natural enzyme. A phylogenetic analysis indicated that mMDH, present in all stramenopiles studied, can be useful to study the relationships between these organisms. MDH with the conserved domain MDH_cytoplasmic_cytosolic is absent in some stramenopiles as well as in fungi. This enzyme seems to be less related within the stramenopile group. The Phytophthora cMDHs have an insertion of six amino acids that is also present in the stramenopile cMDHs studied, with the exception of Thalassiosira pseudonana cMDH, and is absent in other known eukaryotic cMDHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号