首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo nitrogen isotope discrimination among organic plant compounds   总被引:1,自引:0,他引:1  
The bulk delta 15 N-value of plant (leaf) biomass is determined by that of the inorganic primary nitrogen sources NO(3)(-), NH(4)(+) and N(2), and by isotope discriminations on their uptake or assimilation. NH(4)(+) from these is transferred into "organic N" mainly by the glutamine synthetase reaction. The involved kinetic nitrogen isotope effect does not become manifest, because the turnover is quantitative. From the product glutamine any further conversion proceeds in a "closed system", where kinetic isotope effects become only efficient in connection with metabolic branching. The central and most important corresponding process is the GOGAT-reaction, involved in the de novo nitrogen binding and in recycling processes like the phenylpropanoid biosynthesis and photorespiration. The reaction yields relatively 15N-depleted glutamate and remaining glutamine, source of 15N-enriched amide-N in heteroaromatic compounds. Glutamate provides nitrogen for all amino acids and some other compounds with different 15N-abundances. An isotope equilibration is not connected to transamination; the relative delta 15 N-value of individual amino acids is determined by their metabolic tasks. Relative to the bulk delta 15 N-value of the plant cell, proteins are generally 15N-enriched, secondary products like chlorophyll, lipids, amino sugars and alkaloids are depleted in 15N. Global delta 15 N-values and 15N-patterns of compounds with several N-atoms can be calculated from those of their precursors and isotope discriminations in their biosyntheses.  相似文献   

2.
Wild Type (WT) and transgenic tobacco plants expressing isopentenyltransferase (IPT), a gene encoding the enzyme regulating the rate-limiting step in cytokinins (CKs) synthesis, were grown under limited nitrogen (N) conditions. We analyzed nitrogen forms, nitrogen metabolism related-enzymes, amino acids and photorespiration related-enzymes in WT and PSARK∷IPT tobacco plants. Our results indicate that the WT plants subjected to N deficiency displayed reduced nitrate (NO3) assimilation. However, an increase in the production of ammonium (NH4+), by the degradation of proteins and photorespiration led to an increase in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle in WT plants. In these plants, the amounts of amino acids decreased with N deficiency, although the relative amounts of glutamate and glutamine increased with N deficiency. Although the transgenic plants expressing PSARK∷IPT and growing under suboptimal N conditions displayed a significant decline in the N forms in the leaf, they maintained the GS/GOGAT cycle at control levels. Our results suggest that, under N deficiency, CKs prevented the generation and assimilation of NH4+ by increasing such processes as photorespiration, protein degradation, the GS/GOGAT cycle, and the formation of glutamine.  相似文献   

3.
Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot be compensated by photorespiratory serine biosynthesis. Using isotope labeling, we show that PPSB-deficiency impairs the synthesis of proteins and purine nucleotides in plants. Furthermore, deficiency in PPSB-mediated serine biosynthesis leads to a strong accumulation of metabolites related to nitrogen metabolism. This result corroborates 15N-isotope labeling in which we observed an increased enrichment in labeled amino acids in PPSB-deficient plants. Expression studies indicate that elevated ammonium uptake and higher glutamine synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) activity causes this phenotype. Metabolic analyses further show that elevated nitrogen assimilation and reduced amino acid turnover into proteins and nucleotides are the most likely driving forces for changes in respiratory metabolism and amino acid catabolism in PPSB-deficient plants. Accordingly, we conclude that even though photorespiration generates high amounts of serine in plants, PPSB-derived serine is more important for plant growth and its deficiency triggers the induction of nitrogen assimilation, most likely as an amino acid starvation response.

The phosphorylated pathway of serine biosynthesis is required to synthesize serine for plant growth; and its deficiency triggers an amino acid starvation response by inducing nitrogen assimilation.  相似文献   

4.
Ammonium is the reduced nitrogen form available to plants for assimilation into amino acids. This is achieved by the GS/GOGAT pathway that requires carbon skeletons in the form of 2-oxoglutarate. To date, the exact enzymatic origin of this organic acid for plant ammonium assimilation is unknown. Isocitrate dehydrogenases and aspartate aminotransferases have been proposed to carry out this function. Since different (iso)forms located in several subcellular compartments are present within a plant cell, recent efforts have concentrated on evaluating the involvement of these enzymes in ammonium assimilation. Furthermore, several observations indicate that 2-oxoglutarate is a good candidate as a metabolic signal to regulate the co-ordination of C and N metabolism. This will be discussed with respect to recent advances in bacterial signalling processes involving a 2-oxoglutarate binding protein called PII.  相似文献   

5.
Intense efforts are currently devoted to elucidate the metabolic networks of plants, in which nitrogen assimilation is of particular importance because it is strongly related to plant growth. In addition, at the leaf level, primary nitrogen metabolism interacts with photosynthesis, day respiration, and photorespiration, simply because nitrogen assimilation needs energy, reductant, and carbon skeletons which are provided by these processes. While some recent studies have focused on metabolomics and genomics of plant leaves, the actual metabolic fluxes associated with nitrogen metabolism operating in leaves are not very well known. In the present paper, it is emphasized that (12)C/(13)C and (14)N/(15)N stable isotopes have proved to be useful tools to investigate such metabolic fluxes and isotopic data are reviewed in the light of some recent advances in this area. Although the potential of stable isotopes remains high, it is somewhat limited by our knowledge of some isotope effects associated with enzymatic reactions. Therefore, this paper should be viewed as a call for more fundamental studies on isotope effects by plant enzymes.  相似文献   

6.
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.  相似文献   

7.
Nitrate assimilation diminishes under water stress. This can augment the photorespiratory rate as a protection mechanism, increasing the ammonium concentration, which must be rapidly assimilated. We therefore examined the effect of moderate water stress in photorespiration and N assimilation, as possible tolerance mechanisms in cherry tomato. Five cherry tomato cultivars with different degrees of water stress tolerance were submitted to two water treatments: well-watered (100% FC) and water stress (50% FC). In the susceptible cultivars, nitrate assimilation declined but without stimulating photorespiration. Zarina, a stress-tolerant cultivar, showed increased activity of the main enzymes involved in photorespiration, together with greater assimilation of nitrates and of the resulting ammonium. This translates as higher concentrations of N as well as amino acids and proteins. We characterize these mechanisms in the cv. Zarina (tolerant) as essential to water stress tolerance, acting on N metabolism as well as helping to maintain or augment biomass.  相似文献   

8.
In general, drought depresses nutrient uptake by the root and transport to the shoot due to a restricted transpiration rate, which may contribute to growth limitation under water deprivation. Moreover, water stress may also restrict the ability of plants to reduce and assimilate nitrogen through the inhibition of enzymes implicated in nitrogen metabolism. The assimilation of nitrogen has marked effects on plant productivity, biomass, and crop yield, and nitrogen deficiency leads to a decrease in structural components. Plants produce significant quantities of NH4 + through the reduction of NO3 ? and photorespiration, which must be rapidly assimilated into nontoxic organic nitrogen compounds. The aim of the present work was to determine the response of reciprocal grafts made between one tomato tolerant cultivar (Lycopersicon esculentum), Zarina, and a more sensitive cultivar, Josefina, to nitrogen reduction and ammonium assimilation under water stress conditions. Our results show that when cv. Zarina (tolerant cultivar) was used as rootstock grafted with cv. Josefina (ZarxJos), these plants showed an improved N uptake and NO3 ? assimilation, triggering a favorable physiological and growth response to water stress. On the other hand, when Zarina was used as the scion (JosxZar), these grafted plants showed an increase in the photorespiration cycle, which may generate amino acids and proteins and could explain their better growth under stress conditions. In conclusion, grafting improves N uptake or photorespiration, and increases leaf NO3 ? photoassimilation in water stress experiments in tomato plants.  相似文献   

9.
The representation of the nitrogen (N) cycle in Earth system models (ESMs) is strongly motivated by the constraint N poses on the sequestration of anthropogenic carbon (C). Models typically implement a stoichiometric relationship between C and N in which external supply and assimilation by organisms are adjusted to maintain their internal stoichiometry. N limitation of primary productivity thus occurs if the N supply from uptake and fixation cannot keep up with the construction of tissues allowed by C assimilation. This basic approach, however, presents considerable challenges in how to faithfully represent N limitation. Here, we review how N limitation is currently implemented and evaluated in ESMs and highlight challenges and opportunities in their future development. At or near steady state, N limitation is governed by the magnitude of losses from the plant‐unavailable pool vs. N fixation and there are considerable differences in how models treat both processes. In nonsteady‐state systems, the accumulation of N in pools with slow turnover rates reduces N available for plant uptake and can be challenging to represent when initializing ESM simulations. Transactional N limitation occurs when N is incorporated into various vegetation and soil pools and becomes available to plants only after it is mineralized, the dynamics of which depends on how ESMs represent decomposition processes in soils. Other challenges for ESMs emerge when considering seasonal to interannual climatic oscillations as they create asynchronies between C and N demand, leading to transient alternations between N surplus and deficit. Proper evaluation of N dynamics in ESMs requires conceptual understanding of the main levers that trigger N limitation, and we highlight key measurements and observations that can help constrain these levers. Two of the biggest challenges are the mechanistic representation of plant controls on N availability and turnover, including N fixation and organic matter decomposition processes.  相似文献   

10.
? Nitrogen (N) availability has a major impact on a wide range of biogeochemical processes in terrestrial ecosystems. Changes in N availability modify the capacity of plants to sequester carbon (C), but despite the crucial importance for our understanding of terrestrial ecosystems, the relative contribution of different N forms to plant N nutrition in the field is not known. Until now, reliably assessing the highly dynamic pool of plant-available N in soil microsites was virtually impossible, because of the lack of adequate sampling techniques. ? For the first time we have applied a novel microdialysis technique for disturbance-free monitoring of diffusive fluxes of inorganic and organic N in 15 contrasting boreal forest soils in situ. ? We found that amino acids accounted for 80% of the soil N supply, while ammonium and nitrate contributed only 10% each. In contrast to common soil extractions, microdialysis revealed that the majority of amino acids are available for plant and mycorrhizal uptake. ? Our results suggest that the N supply of boreal forest soils is dominated by organic N as a major component of plant-available N and thus as a regulator of growth and C sequestration.  相似文献   

11.
The xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction. For plutonium and cadmium, it was not possible to fully duplicate complexes formed in vivo by back reaction with whole exudates or individual class fractions, indicating the possible importance of plant induction processes, reaction kinetics, and/or the formation of mixed ligand complexes. The number and distribution of specific iron- and nickel-containing complexes varies with plant age and appears to be related to the relative concentration of organic acids and amino acids/peptides being produced and transported in the xylem as the plant matures.  相似文献   

12.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   

13.
Populations of the two native Antarctic vascular plant species (Deschampsia antarctica and Colobanthus quitensis) have expanded rapidly in recent decades, yet little is known about the effects of these expansions on soil nutrient cycling. We measured the concentrations of dissolved organic carbon (DOC) and nitrogen (DON), amino acids and inorganic N in soils under these two vascular plant species, and under mosses and lichens, over a growing season at Signy Island in the maritime Antarctic. We recorded higher concentrations of nitrate, total dissolved nitrogen, DOC, DON and free amino acids in soil under D. antarctica and C. quitensis than in lichen or moss dominated soils. Each vegetation cover gave a unique profile of individual free amino acids in soil solution. Significant interactions between soil type and time were found for free amino acid concentrations and C/N ratios, indicating that vascular plants significantly change the temporal dynamics of N mineralization and immobilization. We conclude that D. antarctica and C. quitensis exert a significant influence over C and N cycling in the maritime Antarctic, and that their recent population expansion will have led to significant changes in the amount, type and rate of organic C and N cycling in soil.  相似文献   

14.
Nodulated lupins (Lupinus angustifolius cv. Wonga) were hydroponically grown under conditions of low phosphate (LP) or adequate phosphate (HP) to assess the effect of phosphoenolpyruvate carboxylase (PEPC)-derived organic acids on nitrogen assimilation in LP nodules. LP conditions are linked to altered organic acid metabolism, by the engagement of PEP metabolism via PEPC. In LP nodules, the enhanced organic acid synthesis may reduce the available organic carbon for nitrogen assimilation. The diversion of carbon between the organic acid- and amino acid pools was assessed through key nodular enzymes and (14)CO(2) metabolism. Under LP conditions, increased rates of organic acid synthesis via PEPC and malate dehydrogenase (MDH), coincided with reduced nitrogen assimilation via aspartate aminotransferase (AAT), aspartate synthetase (AS) and glutamine synthetase (GS)/glutamate synthase (GOGAT) activities. There was a preferential metabolism of nodular (14)CO(2) into organic acids and particularly into malate. High malate levels were associated with reduced N(2) fixation and synthesis of amino acids. These results indicate that phosphorus deficiency can enhance malate synthesis in nodules, but that excessive malate accumulation may inhibit N(2) fixation and nitrogen assimilation.  相似文献   

15.
In monoculture, certain plant species are able to preferentially utilize different nitrogen (N) forms, both inorganic and organic, including amino acids and peptides, thus forming fundamental niches based on the chemical form of N. Results from field studies, however, are inconsistent: Some showing that coexisting plant species predominantly utilize inorganic N, while others reveal distinct interspecies preferences for different N forms. As a result, the extent to which hypothetical niches are realized in nature remains unclear. Here, we used in situ stable isotope tracer techniques to test the idea, in temperate grassland, that niche partitioning of N based on chemical form is related to plant productivity and the relative availability of organic and inorganic N. We also tested in situ whether grassland plants vary in their ability to compete for, and utilize peptides, which have recently been shown to act as an N source for plants in strongly N-limited ecosystems. We hypothesized that plants would preferentially use NO3-N and NH4+-N over dissolved organic N in high-productivity grassland where inorganic N availability is high. On the other hand, in low-productivity grasslands, where the availability of dissolved inorganic N is low, and soil availability of dissolved organic N is greater, we predicted that plants would preferentially use N from amino acids and peptides, prior to microbial mineralization. Turves from two well-characterized grasslands of contrasting productivity and soil N availability were injected, in situ, with mixtures of 15N-labeled inorganic N (NO3 and NH4+) and 13C15N labeled amino acid (l-alanine) and peptide (l-tri-alanine). In order to measure rapid assimilation of these N forms by soil microbes and plants, the uptake of these substrates was traced within 2.5 hours into the shoots of the most abundant plant species, as well as roots and the soil microbial biomass. We found that, contrary to our hypothesis, the majority of plant species across both grasslands took up most N in the form of NH4+, suggesting that inorganic N is their predominant N source. However, we did find that organic N was a source of N which could be utilized by plant species at both sites, and in the low-productivity grassland, plants were able to capture some tri-alanine-N directly. Although our findings did not support the hypothesis that differences in the availability of inorganic and organic N facilitate resource partitioning in grassland, they do support the emerging view that peptides represent a significant, but until now neglected, component of the terrestrial N cycle.  相似文献   

16.
Although climate scenarios have predicted an increase in [CO2] and temperature conditions, to date few experiments have focused on the interaction of [CO2] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO2. The main goal of this study was to analyze the effect of interacting [CO2] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO2] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO2] (400 vs 700 µmol mol?1) and temperature (ambient vs ambient + 4°C) in CO2 gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO2] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO2] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO2] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.  相似文献   

17.
Jones  D.L.  Dennis  P.G.  Owen  A.G.  van Hees  P.A.W. 《Plant and Soil》2003,248(1-2):31-41
Organic acids have been hypothesized to perform many functions in soil including root nutrient acquisition, mineral weathering, microbial chemotaxis and metal detoxification. However, their role in most of these processes remains unproven due to a lack of fundamental understanding about the reactions of organic acids in soil. This review highlights some of the knowledge gaps and misconceptions associated with the behavior of organic acids in soil with particular reference to low-molecular-weight organic acids (e.g., citrate, oxalate, malate) and plant nutrient acquisition. One major concern is that current methods for quantifying organic acids in soil may vastly underestimate soil solution concentrations and do not reveal the large spatial heterogeneity that may exist in their concentration (e.g., around roots or microbes). Another concern relates to the interaction of organic acids with the soil's solid phase and the lack of understanding about the relative importance of processes such as adsorption versus precipitation, and sorption versus desorption. Another major knowledge gap concerns the utilization of organic acids by the soil microbial community and the forms of organic acids that they are capable of degrading (e.g., metal-complexed organic acids, adsorbed organic acids etc). Without this knowledge it will be impossible to obtain accurate mathematical models of organic acid dynamics in soil and to understand their role and importance in ecosystem processes. Fundamental research on organic acids and their interaction with soil still needs to be done to fully elucidate their role in soil processes.  相似文献   

18.
Nitrogen (N) deposition levels and frequencies of extreme drought events are increasing globally. In efforts to improve understanding of plants' responses to associated stresses, we have investigated responses of mosses to drought under elevated nitrogen conditions. More specifically, we exposed Pogonatum cirratum subsp. fuscatum and Hypnum plumaeforme to various nitrate (KNO3) or ammonium (NH4Cl) treatments, with and without water deficit stress and monitored indices related to carbon (C) and N metabolism both immediately after the stress and after a short recovery period. The results show that N application stimulated both C and N assimilation activities, including ribulose‐1,5‐bisphosphate carboxylase, glutamine synthetase/glutamate synthase (GS/GOGAT), and glutamate dehydrogenase (GDH) activities, while water deficit inhibited C and N assimilation. The mosses could resist stress caused by excess N and water deficit by increasing their photorespiration activity and proline (Pro) contents. However, N supply increased their sensitivity to water stress, causing sharper reductions in C and N assimilation rates, and further increases in photorespiration and Pro contents, indicating more serious oxidative or osmotic stress in the mosses. In addition, there were interspecific differences in N assimilation pathways, as the GS/GOGAT and GDH pathways were the preferentially used ammonium assimilation pathways in P. cirratum and H. plumaeforme when stressed, respectively. After rehydration, both mosses exhibited overcompensation effects for most C and N assimilation activities, but when supplied with N, the activities were generally restored to previous levels (or less), indicating that N supply reduced their ability to recover from water deficit stress. In conclusion, mosses can tolerate a certain degree of water deficit stress and possess some resilience to environmental fluctuations, but elevated N deposition reduces their tolerance and ability to recover.  相似文献   

19.
Experimental Evidence for the Isotope Effect in Photorespiration   总被引:1,自引:0,他引:1  
Recent data on carbon isotope fractionation in photosynthesis are reviewed. Analysis of the carbon isotope composition in photosynthates and derivative products supports the hypothesis of the isotope effect in photorespiration. This hypothesis envisages the existence in a photosynthesizing cell of two carbon flows differing in isotope composition. One of these flows is enriched in 12C and associated with the assimilation pathway of photosynthesis. The other flow enriched in 13C circulates in the photorespiratory pathway. The relation between stimulated photorespiration and the carbon isotope composition of biomass supports this view. Our hypothesis of two interrelated isotope effects in photosynthesis leads to the conclusion that photosynthesis and photorespiration are coupled processes subject to periodical oscillations, where Rubisco acts as a main switch regulating these two pathways.  相似文献   

20.
Encroachment of nitrogen-fixing trees and shrubs into grasslands and savannas is a well-documented land cover change that occurs worldwide. In the Rio Grande Plains region of southern Texas, previous studies have shown woody encroachment by leguminous Prosopis glandulosa (mesquite) trees increases soil C and N, decreases microbial biomass N relative to soil N, and accelerates N mineralization and nitrification. We examined responses of the dominant organic N components in soil (amino acids and amino sugars) and two soil-bound protein-N acquiring enzymes (arylamidase and β-N-acetylglucosaminidase) along a grassland-to-woodland successional chronosequence to determine changes to soil N chemistry and extractability. The proportion of total N held within amino compounds was significantly lower in the woodlands (47 %) relative to the grassland soils (62 %). This increase in non-hydrolysable N was accompanied by increases in plant cell wall derived amino acids (e.g. hydroxyproline, serine) and losses of microbial amino sugars, indicating the woodland organic N pool was altered in composition and potentially in quality, either because it was more structurally protected or difficult to degrade due to polymerization/condensation reactions. Soil carbon-normalized activities of both soil-bound N-acquiring enzymes were significantly higher in woodland soils, consistent with changes in the biochemical composition of organic N. Although soil total N increases following woody encroachment, this additional organic N appears to be less extractable by chemical hydrolysis and thus potentially in more refractory forms, which may limit microbial N accessibility, slow the cycling of soil organic carbon, and contribute to observed soil C and N accrual in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号