首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drugs with efficacy in psychiatric disorders affect the function of central neurotransmitter amines, which are inactivated primarily by monoamine oxidase (MAO). Effect of these drugs on the two types of MAO (MAO-A and MAO-B) has been studied in rat brain. The result showed that chlorpromazine (CPZ) and imipramine (IMI) at concentrations of 1x10(-2), 5x10(-3) and 2.5x10(-3) M inhibited rat brain mitochondrial MAO-A activity in vitro by 82, 50, 39 and 86, 74, 38 %, respectively. CPZ at concentrations of 5x10(-3), 2.5x10(-3), 1x10(-3) M inhibited rat brain mitochondrial MAO-B activity in vitro by 83, 55, 39 %, respectively, while IMI at concentrations of 5x10(-4), 2.5x10(-4), 1x10(-4) M inhibited the in vitro enzyme activity by 43, 35, 21 %, respectively. Lithium at concentration of 5x10(-3) M could not either inhibit MAO-A or MAO-B in the mitochondrial fraction of rat brain.  相似文献   

2.
Dimebone was shown to inhibit monoamine oxidase (MAO) deaminating dopamine and serotonin, decrease dopamine metabolism in the basal ganglia of the rat brain, increase noradrenaline level and depress dopamine deamination in the hypothalamus. Dimebone first increased and then diminished the release of dopamine in the cortex, with the concomitant MAO activation and the increase in dopamine and noradrenaline levels. The in vitro experiments have demonstrated that dimebone (10(-4)) preferentially inhibited MAO activity, type B and dopamine deamination in homogenates of different rat brain structures. The role of MAO inhibition in the mechanism of dimebone action on the catecholamine metabolism in the brain structures and its stimulating effect on CNS are discussed.  相似文献   

3.
The effects of N-(2-nitro-4-azidophenyl) serotonin (NAP-5-HT) on types A and B monoamine oxidase (MAO) in rat brain cortex were studied. In the dark this compound acted as a competitive inhibitor for both types A and B MAO (Ki values of 0.19 microM and 0.21 microM for types A and B MAO, respectively). Upon photolysis, NAP-5-HT became an irreversible inhibitor for only type B MAO. A 50% inhibition was obtained by irradiation of the enzyme in the presence of 35 nM NAP-5-HT. Furthermore the inhibition of type B MAO could be protected by including its substrate phenylethylamine during the irradiation. Under the same photolytic conditions photodependent inhibition of type A MAO by NAP-5-HT was not clearly observed. These results provide further evidence that there is a fundamental difference in the active site of the two types of MAO in brain. NAP-5-HT may be a useful photoaffinity probe for characterizing the active site of type B MAO.  相似文献   

4.
Abstract— The possible existence of type C MAO, distinct from type A and type B, in circumventricular structures of rat brain was examined by histological studies on the inhibitory effects of clorgyline. a preferential type A MAO inhibitor and deprenyl, a preferential type B inhibitor, on enzyme. Brain slices were preincubated with the inhibitors and then incubated with 5-HT, the substrate for type A MAO, and stained for MAO activity. Deposits of the product formazan were detected in circumventricular structures of slices of brain preincubated with clorgyline and deprenyl at concentrations of 10-7–10-4m at room temperature for 5 min. When the slices were preincubated with either of these inhibitors at room temperature for 60 min, strong activity was observed in this region, whereas when they were preincubated with either 10-5m -clorgyline or 10-5m -deprenyl for 20 and 30 min at 37°C, no MAO activity was seen in any region of the brain. Thus, at the higher preincubation temperature, lower concentrations of each inhibitor and a shorter preincubation period were required for inhibition of the enzyme. Preincubation for 60 min at 37°C with a combination of 10-7m -clorgyline and 10-8m -deprenyl did not inhibit the enzyme in the circumventricular region completely, but at the same temperature, concentrations of 10-7m of both inhibitors inhibited the enzyme completely in 10min, Thus the effects of the inhibitors are synergistic. These results indicate that the inhibitory effects of the two inhibitors on the enzyme in circumventricular structures of the brain is time- and temperature-dependent. Moreover, the activity seems to be sensitive to deprenyl even when 5-HT is used as substrate. The results do not support the idea of the existence of type C MAO, distinct from type A and type B MAO.  相似文献   

5.
The inhibition of type A and B monoamine oxidase (MAO A and B) in rat brain, liver and heart by MD780515, 3-[4-(3 cyanophenylmethoxy) phenyl]-5-(methoxymethyl)-2-oxazolidinone, has been investigated ex vivo with 5-hydroxytryptamine (5-HT) and β-phenylethylamine (PEA) as substrates. MAO A was strongly inhibited for four hours after oral administration of 10 mg/kg MD780515 (maximum inhibition : 72%, 86% and 83% in brain, liver and heart respectively. In contrast, in heart where PEA is deaminated by type A MAO, the predominant form of MAO in that tissue, the inhibition was 68% 30 minutes after administration of the compound. In all cases, MAO activities reached control values 24 hours after drug administration (10 mg/kg), whereas some inhibitory activity was still present 24 hours after oral administration of higher doses. The strong MAO A inhibition (68 to 83%) remaining in the three tissues 24 hours after oral administration of clorgyline (5 mg/kg) was completely removed by pretreatment with MD780515 (10 mg/kg). In the same conditions, MD780515 protected against the inhibition (53%) by clorgyline of PEA deamination in heart. Oral pretreatment with increasing doses of MD780515 (2.6 to 84 mg/kg) gradually removed brain MAO A inhibition caused by clorgyline (92%, 28.2 mg/kg) or tranylcypromine (88%, 4.8 mg/kg), the complete removal being observed at the dose of 21 mg/kg of MD780515 for clorgyline, and at 42 mg/kg for tranylcypromine. Inhibition of brain MAO B by tranylcypromine (96%) was not modified by pretreatment with the same range of oral doses of MD780515. The results are consistent with a specific and reversible inhibition of MAO A activity by MD780515 which can protect against long acting MAO A inhibitory effects of clorgyline and tranylcypromine. MD780515 enhances the selectivity of tranylcypromine.  相似文献   

6.
The distribution of basal and of H2O2-stimulated cyclooxygenase activity in the primary fractions of rat brain homogenates and in the subfractions of crude mitochondrial fraction was studied. For comparison, the localization of H2O2-generating monoamine oxidase (MAO) as well as that of the mitochondrial marker succinate dehydrogenase (SDH) was also examined. H2O2 was generated by MAO using 5 x 10(-4) M noradrenaline (NA) or 2 x 10(-4) M 2-phenylethylamine (PEA) as substrates, or by 25 micrograms glucose oxidase (GOD) per ml in the presence of 1 mM glucose. For nonstimulated (basal) cyclooxygenase, the relative specific activity (RSA) was high in microsomes (1.79) and in the free mitochondria-containing subfraction of the crude mitochondrial fraction (1.94). Parallel distribution of MAO and H2O2-stimulated cyclooxygenase was observed in all fractions studied in the presence of NA. The highest RSA was found in the purified mitochondria for both enzymes (1.85 for MAO and 1.97 for H2O2-stimulated cyclooxygenase). The enrichment of SDH (RSA = 2.21) indicated a high concentration of mitochondria in this fraction. The same distribution of H2O2-stimulated cyclooxygenase was obtained when, instead of the MAO-NA system, hydrogen peroxide was generated by GOD in the presence of glucose. H2O2 generated by deamination of NA or PEA by MAO, or during the enzymatic oxidation of glucose by GOD, caused a threefold increase in mitochondrial endoperoxide formation. Indomethacin (2 x 10(-4) M), catalase (50 micrograms/ml), and pargyline (2 x 10(-4) M) eliminated the MAO-dependent mitochondrial synthesis of PG endoperoxides. The GOD-dependent cyclooxygenase activity in this fraction was abolished by indomethacin or catalase, but not by pargyline. The results show the existence of a mitochondrial cyclooxygenase in brain tissue. The enzyme is sensitive to H2O2 and produces prostaglandin endoperoxides from an endogenous source of arachidonic acid. The identical localization of H2O2-producing MAO and H2O2-sensitive cyclooxygenase suggests a possible coupling between monoamine and arachidonic acid metabolism.  相似文献   

7.
Extracts of Ginkgo biloba have been reported to reversibly inhibit both monoamine oxidase (MAO) A and B in rat brain in vitro leading to speculation that MAO inhibition may contribute to some of its central nervous system effects. Here we have used positron emission tomography (PET) to measure the effects of Ginkgo biloba on human brain MAO A and B in 10 subjects treated for 1 month with 120 mg/day of the Ginkgo biloba extract EGb 761, using [11C]clorgyline and [11C]L-deprenyl-D2 to measure MAO A and B respectively. A three-compartment model was used to calculate the plasma to brain transfer constant K1 which is related to blood flow, and lambdak3, a model term which is a function of the concentration of catalytically active MAO molecules. Ginkgo biloba administration did not produce significant changes in brain MAO A or MAO B suggesting that mechanisms other than MAO inhibition need to be considered as mediating some of its CNS effects.  相似文献   

8.
In this study, we investigated whether treatment with L-deprenyl, a selective monoamine oxidase B (MAO B) inhibitor, also inhibits MAO A or the dopamine transporter in the human brain. Six normal volunteers (age 46+/-6 yrs) had two PET sessions, one at baseline and one following L-deprenyl (10 mg/day) for 1 week. Each session included one scan with [11C]clorgyline (to assess MAO A) and one scan 2 hours later with [11C]cocaine (to assess dopamine transporter availability). A 3-compartment model was used to compare the plasma-to-brain transfer constant, K1 (a function of blood flow) and lambdak3 (a kinetic term proportional to brain MAO A) before and after treatment. Dopamine transporter availability was measured as the ratio of distribution volumes of the striatum to cerebellum (DVR) which is equal to Bmax/KD +1. L-Deprenyl treatment for 1 week did not affect either brain MAO A activity or dopamine transporter availability. There was a non-significant trend for an increase in K1 after L-deprenyl. These results confirm that L-deprenyl after one week of treatment at doses typically used clinically is selective for MAO B and that it does not produce a measurable affect on the dopamine transporter, suggesting that MAO A inhibition and dopamine transporter blockade do not contribute to its pharmacological effects.  相似文献   

9.
The effects of ganglioside supplementation of culture medium on monoamine oxidase (MAO) type A and B activities in a rat clonal pheochromocytoma cell line, PC12h, were examined. The MAO activity in PC12h cells proved to be mainly due to type A MAO, and type B MAO activity was negligible. After supplementation of the culture medium with ganglioside GM1, the PC12 cells were found to express type B MAO activity after 4 days of culture, and the amount of type B activity increased with the number of days of culture. After 3 weeks of culture in the presence of GM1, type B activity was about 10% of the total, whereas in control cells type B MAO activity was only about 0.6% of the total. By kinetic analyses of type A and B MAO in PC12h cells after 3 weeks of culture, the increase of type B MAO activity was found to be due to the increase in amount of type B MAO; the Km values were almost the same and only the Vmax values were increased in the cells supplemented with GM1. Among gangliosides tested GM1 was the most effective in causing expression of type B MAO activity, whereas nerve growth factor was not effective. These results suggest that GM1 and other gangliosides may be involved in the expression of type B MAO in nerve cells and in the regulation of levels of the biogenic amines in the brain.  相似文献   

10.
In vitro comparative studies of effects of amiridin (9-amino-2, 3, 5, 6, 7, 8-hexahydro-1H-cyclopentane (b) choline monohydrate hydrochloride) and tacrine physostigmine and piracetam on monoamine oxidase A (MAO-A) and B (MAO-B) activity in the rat brain were carried out. Piracetam (1 x 10(-4)-1 x 10(-3) M) dose-dependently increased MAO-A and MAO-B activity. At all concentrations used (1 x 10(-7)-5 x 10(-4) M) physostigmine had no effect on MAO-A and MAO-B activity. Amiridin was found to inhibit MAO-B activity at 5 x 10(-4) M concentration only. Tacrine inhibited MAO-A activity at 5 x 10(-4) M concentration. The therapeutical effects of amiridin and tacrine in treatment of Alzheimer disease were not related to their action on MAO-A and -B activity.  相似文献   

11.
The total activities of monoamine oxidase (MAO) and the ratio of type B/type A activities were determined in mouse neuroblastoma N1E-115 cells, and in NX31T and NG108-15 hybrid cells derived from mouse neuroblastoma X rat sympathetic ganglion hybrid or mouse neuroblastoma X rat glioma hybrid cells. N1E-115 and NX31T cells possessed type A activities exclusively, although NG108-15 cells showed both type A (65-90%) and type B (10-35%) MAO activities. The activity of type A MAO in NX31T and N1E-115 cells was relatively constant during culturing periods in the presence or absence of dibutyryl cyclic AMP (Bt2cAMP), whereas total MAO activity and the ratio of type B MAO/type A MAO in NG108-15 cells increased as a function of culture periods. Prostaglandin E1 (PGE1) and theophylline, the best known combination to increase intracellular cyclic AMP content of NG108-15 cells, caused similar increases of MAO and of the type B/type A ratio in NG108-15 cells. The results suggest that MAO activity and expression of MAO B activity are regulated in NG108-15 cells in a cyclic AMP-dependent manner.  相似文献   

12.
Monoamine oxidase (MAO) activity towards kynuramine as substrate was measured in 6 hybrid cells derived by fusion of neuroblastoma and glioma, liver or brain cells, and was compared with that of parental or non-parental clones. Activities varied from the lowest level of less than 0.15 pmol/min/mg protein in a neuroblastoma clone NB2A to the highest level of 127 pmol/min/mg protein in NCB20 mouse neuroblastoma × Chinese hamster embryo brain hybrid cells. The relative proportions of A and B types of MAO activities were determined in homogenates of each cell line by inhibition curves with clorgyline and deprenyl. Although the A type activity was found in all cell lines measured, MAO A was predominant in 9 clones, except for NCB20 hybrid cells, N4G-B-a neuroblastoma × glioma hybrid cells, and G8-1 myoblast. The ratio of type A/type B activity in NCB20, N4G-B-a and G8-1 cells was 20/80, 75/25 and 95/5, respectively. The results suggest that NCB20 cells are highly enriched in MAO type B, and that the NCB20 cell is an excellent model for studying the type B activity found in the brain in vivo.  相似文献   

13.
Abstract: MDL 72145, ( E )-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine hydrochloride, was designed and synthesised as a potential enzyme-activated irreversible inhibitor of monoamine oxidase (MAO). In vitro , the compound displayed time-dependent pseudo-first-order irreversible inhibitory characteristics with high selectivity for the B form of rat brain mitochondrial MAO At 10°C the Kt and T50 values for the B enzyme were 40 μ M and 1.7 min, respectively, while these same kinetic constants for the A enzyme were 131 μ M and 14.5 mm, respectively. Selective protection against inactivation of the two forms of MAO by MDL 72145 was obtained by preincu-bating the enzyme with suitable concentrations of the selective A and B substrates, 5-hydroxytryptamine and benzylamine.  相似文献   

14.
M E Bembenek 《Life sciences》1990,46(25):1873-1877
The ability of highly purified preparations of human monoamine oxidase A and B (MAO A and B) to utilize 1-methyl-4-(1-methylpyrrol-2-yl)-4-piperidinol (MMPP) and its dehydration product 1,2,3,6-tetrahydro-1-methyl-4-(methylpyrrol-2-yl) pyridine (TMMP) as substrates was investigated. The results showed that TMMP was a substrate for both forms of MAO with Km,app values of approximately 60 microM. However, MAO B had a Vmax,app for TMMP about 30-fold greater than MAO A. Additional studies revealed that MMPP was a poor substrate of only MAO B (Km,app = 9.5 mM) and that acid treatment of MMPP led to the formation of a product that could be readily oxidized by both MAO A and B. Similar acid pretreatment of TMMP yielded a product that was a much poorer substrate for MAO B than the parent compound. These results may partially explain why orally administered MMPP produces neurotoxicity in monkeys and TMMP fails to induce chemical parkinsonism.  相似文献   

15.
1. Monoamine oxidase (MAO) activity was measured in brain, liver, kidney and intestine of the adult bullfrog by a fluorometric method. 2. All tissues contained both type A and type B MAO, on the basis of responses to specific inhibitors, but with different ratios in each tissue. 3. MAO activity was optimum at 30 degrees C. However, MAO type B showed greater activity changes related to incubation temperature than did type A. 4. The Michaelis constant (Km) of MAO also varied with temperature, with a nadir around 20 degrees C. The functional significance of this is not clear. 5. Arrhenius plots showed that the activation energy for MAO B was higher than for MAO A.  相似文献   

16.
We have studied striatal dopamine (DA) metabolism in monoamine oxidase (MAO) B-deficient mice using brain microdialysis. Baseline DA levels were similar in wild-type and knock-out (KO) mice. Administration of a selective MAO A inhibitor, clorgyline (2 mg/kg), increased DA levels and decreased levels of its metabolites in all mice, but a selective MAO B inhibitor, l-deprenyl (1 mg/ kg), had no effect. Administration of 10 and 50 mg/kg L-DOPA, the precursor of DA, increased the levels of DA similarly in wild-type and KO mice. The highest dose of L-DOPA (100 mg/kg) produced a larger increase in DA in KO than wild-type mice. This difference was abolished by pretreating wild-type mice with l-deprenyl. These results suggest that in mice, DA is only metabolized by MAO A under basal conditions and by both MAO A and B at high concentrations. This is in contrast to the rat, where DA is always metabolized by MAO A regardless of concentration.  相似文献   

17.
18.
W R Wu  X Z Zhu 《Life sciences》1999,65(2):157-164
The present study investigated the neuroprotective and neurorestorative effects of Ginkgo biloba extract (EGb 761) and its two components ginkgolides A (BN52020) and B (BN52021) in mice. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg/d i.p. for six days) significantly reduced striatal dopamine (DA) levels in C57 mice measured by high performance liquid chromatography with electrochemical detection (HPLC-EC). When C57 mice were pretreated with EGb 761 (20, 50, 100 mg/kg/d i.p.) for 7 days and then treated with the same extract 30 min before MPTP injection for 6 days, the neurotoxic effect of MPTP was antagonized in a dose-dependent fashion. Similar treatment with ginkgolides A and B (5, 10, 50 mg/kg/d i.p.) showed no protective effect. When C57 mice were treated with EGb 761 (50 mg/kg/d i.p.) after MPTP-lesion, the recovery of striatal dopamine (DA) levels was accelerated. However, similar treatment with ginkgolides A or B (10 mg/kg/d i.p.) did not show any effect. EGb 761, but not ginkgolides A and B, nonselectively inhibited mouse brain MAO activity in vitro (IC50 = 36.45 +/- 1.56 microg/ml) tested by an improved fluorimetric assay. The results demonstrate that EGb 761 administered before or after MPTP treatment effectively protects against MPTP-induced nigrostriatal dopaminergic neurotoxicity and that the inhibitory effect of EGb 761 on brain MAO may be involved in its neuroprotective effect.  相似文献   

19.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The superior cervical ganglion (SCG), pineal body (PB), and liver (L) of the rat, rabbit and cat were stained for monoamine oxidase (MAO) A and B by the tetranitro blue tetrazolium (TNBT) and coupled peroxidase ( PerOx ) methods, using 5-hydroxytryptamine (5HT), tryptamine ( Tryp ), tyramine (Tyr), and benzylamine (Bz) as substrates, and clorgyline (Cl) and deprenyl (Dep), both at 10(-7) M, as selective inhibitors. The nodose ganglion (NG) and dorsal root ganglion (DRG) of the rabbit and cat were also studied. The results with rat tissues were consistent with published quantitative findings (SCG, MAO-A much greater than B; PB, MAO-A less than or equal to B; L, MAO-A = B). In the rabbit, the findings with the SCG were similar; the MAO activities of the PB were relatively resistant to both inhibitors; the MAO of the liver required 10(-4) M concentrations of both inhibitors to produce near total inhibition, suggesting that the liver contains an MAO distinct from MAO A and B. All cat tissues examined appeared to contain almost exclusively MAO-B. In this species 5HT, which is generally considered a selective substrate for MAO-A, was oxidized by MAO-B. The findings indicate that criteria for MAO-A, -B, and other subgroups must be defined for each species and tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号