首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of prothrombin by factor Xa is accompanied by expression of regulatory exosites I and II on the blood coagulation proteinase, thrombin. Quantitative affinity chromatography and equilibrium binding studies with a fluorescein-labeled derivative of the exosite I-specific peptide ligand, hirudin(54-65) ([5F]Hir(54-65) (SO(3)(-)), were employed to identify and characterize this site on human and bovine prothrombin and its expression on thrombin. [5F]Hir(54-65)(SO(3)(-)) showed distinctive fluorescence excitation spectral differences in complexes with prothrombin and thrombin and bound to human prothrombin and thrombin with dissociation constants of 3.2 +/- 0.3 micrometer and 25 +/- 2 nm, respectively, demonstrating a 130-fold increase in affinity for the active proteinase. The bovine proteins similarly showed a 150-fold higher affinity of [5F]Hir(54-65)(SO(3)(-)) for thrombin compared with prothrombin, despite a 2-5-fold lower affinity of the peptides for the bovine proteins. Unlabeled, Tyr(63)-sulfated and nonsulfated hirudin peptides bound competitively with [5F]Hir(54-65)(SO(3)(-)) to human and bovine prothrombin and thrombin, exhibiting similar, 40-70-fold higher affinities for the proteinases, although nonsulfated Hir(54-65) bound with 7-17-fold lower affinity than the sulfated analog. These studies characterize proexosite I for the first time as a specific binding site for hirudin peptides on both human and bovine prothrombin that is present in a conformationally distinct, low affinity state and is activated with a approximately 100-fold increase in affinity when thrombin is formed.  相似文献   

2.
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.  相似文献   

3.
Bothrojaracin (BJC) is a 27-kD snake venom protein from Bothrops jararaca that has been characterized as a potent thrombin inhibitor. BJC binds to exosites I and II, with a dissociation constant of 0.7 nM, and influences but does not block the proteinase catalytic site. BJC also binds prothrombin through an interaction that has not been characterized. In the present work we characterize the interaction of BJC with prothrombin quantitatively for the first time, and identify the BJC binding site on human prothrombin. Gel filtration chromatography demonstrated calcium-independent, 1:1 complex formation between fluorescein-labeled BJC ([5F]BJC) and prothrombin, whereas no interactions were observed with activation fragments 1 or 2 of prothrombin. Isothermal titration calorimetry showed that binding of BJC to prothrombin is endothermic, with a dissociation constant of 76 +/- 32 nM. The exosite I-specific ligand, hirudin(54-65) (Hir(54-65) (SO(3)(-)), displaced competitively [5F]BJC from prothrombin. Titration of the fluorescent hirudin(54-65) derivative, [5F]Hir(54-65)(SO(3)(-)), with human prothrombin showed a dissociation constant of 7.0 +/- 0.2 microM, indicating a approximately 100-fold lower binding affinity than that exhibited by BJC. Both ligands, however, displayed a similar, approximately 100-fold increase in affinity for exosite I when prothrombin was activated to thrombin. BJC efficiently displaced [5F]Hir(54-65)(SO(3)(-)) from complexes formed with thrombin or prothrombin with dissociation constants of 0.7 +/- 0.9 nM and 11 +/- 80 nM, respectively, indicating that BJC and Hir(54-65)(SO(3)(-)) compete for the same exosite on these molecules. The results indicate that BJC is a potent and specific probe of the partially exposed anion-binding exosite (proexosite I) of human prothrombin.  相似文献   

4.
Prothrombin (Pro) activation by factor Xa generates the thrombin catalytic site and exosites I and II. The role of fragment 1 (F1) in the pathway of exosite I expression during Pro activation was characterized in equilibrium binding studies using hirudin(54-65) labeled with 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate ([NBD]Hir(54-65)(SO3-)) or 5-(carboxy)fluorescein ([5F]Hir(54-65)(SO3-)). [NBD]Hir(54-65)(SO3-) distinguished exosite I environments on Pro, prethrombin 1 (Pre 1), and prethrombin 2 (Pre 2) but bound with the same affinities as [5F]Hir(54-65)(SO3-). Conversion of Pro to Pre 1 caused a 7-fold increase in affinity for the peptides. Conversely, fragment 1.2 (F1.2) decreased the affinity of Pre 2 for [5F]Hir(54-65)(SO3-) by 3-fold. This was correlated with a 16-fold increased affinity of F1.2 for Pre 2 in comparison to thrombin, demonstrating an enhancing effect of F1 on F1.2 binding. The active intermediate, meizothrombin, demonstrated a 50- to 220-fold increase in exosite affinity. Free thrombin and thrombin.F1.2 complex bound [5F]Hir(54-65)(SO3-) with indistinguishable affinity, indicating that the effect of F1 on peptide binding was eliminated upon expression of catalytic activity and exosite I. The results demonstrate a new zymogen-specific role for F1 in modulating the affinity of ligands for exosite I. This may reflect a direct interaction between the F1 and Pre 2 domains in Pro that is lost upon folding of the zymogen activation domain. The effect of F1 on (pro)exosite I and the role of (pro)exosite I in factor Va-dependent substrate recognition suggest that the Pro activation pathway may be regulated by (pro)exosite I interactions with factor Va.  相似文献   

5.
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.  相似文献   

6.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

7.
The substrate specificity of thrombin is regulated by binding of macromolecular substrates and effectors to exosites I and II. Exosites I and II have been reported to be extremely linked allosterically, such that binding of a ligand to one exosite results in near-total loss of affinity for ligands at the alternative exosite, whereas other studies support the independence of the interactions. An array of fluorescent thrombin derivatives and fluorescein-labeled hirudin(54-65) ([5F]Hir(54-65)(SO(3)(-))) were used as probes in quantitative equilibrium binding studies to resolve whether the affinities of the exosite I-specific ligands, Hir(54-65)(SO(3)(-)) and fibrinogen, and of the exosite II-specific ligands, prothrombin fragment 2 and a monoclonal antibody, were affected by alternate exosite occupation. Hir(54-65)(SO(3)(-)) and fibrinogen bound to exosite I with dissociation constants of 16-28 nm and 5-7 microm, respectively, which were changed < or =2-fold by fragment 2 binding. Native thrombin and four thrombin derivatives labeled with different probes bound fragment 2 and the antibody with dissociation constants of 3-12 microm and 1.8 nm, respectively, unaffected by Hir(54-65)(SO(3)(-)). The results support a ternary complex binding model in which exosites I and II can be occupied simultaneously. The thrombin catalytic site senses individual and simultaneous binding of exosite I and II ligands differently, resulting in unique active site environments for each thrombin complex. The results indicate significant, ligand-specific allosteric coupling between thrombin exosites I and II and catalytic site perturbations but insignificant inter-exosite thermodynamic linkage.  相似文献   

8.
A membrane-bound Ca2+-dependent complex of the cofactor Factor Va and the enzyme Factor Xa comprises the prothrombinase coagulation complex which catalyzes the proteolytic conversion of prothrombin to thrombin. Analyses of the kinetics of prothrombin activation permit calculation of the stoichiometry and binding parameters governing the functional interactions of Factor Va and Factor Xa with isolated thrombin-activated human platelets and isolated leukocyte subpopulations. Our kinetic approach indicates that Factor Xa binds to approximately 2700 +/- 1000 (n = 8) functional sites on the surface of thrombin-activated platelets with an apparent dissociation constant (Kd) equal to 1.18 +/- 0.53 X 10(-10) M and kcat equal to 19 +/- 7 mol of thrombin/s/mol of Factor Xa bound. The store of Factor V in normal platelets prevents an analogous determination of the functional Factor Va platelet binding sites. Factor Va and Factor Xa titrations performed using platelets from a Factor V antigen-deficient individual indicate that Factor Va and Factor Xa form a 1:1 stoichiometric complex on the surface of thrombin-activated platelets. Both binding isotherms are governed by the same apparent Kd (approximately equal to 10(-10) M) and expressed the same kcat/site (14-17 s-1. Factor Xa-platelet binding parameters are not altered by the use of different platelet agonists, the choice of anticoagulant, or platelet washing procedure. Kinetics of prothrombin activation indicate also that monocytes, lymphocytes, and neutrophils possess, respectively, 16,000, 45,000, and 8,000 Factor Va-Factor Xa receptor sites/cell, which are all governed by apparent KdS approximately equal to 10(-10) M. Enzymatic complexes bound to monocytes or neutrophils exhibit kcat values similar to the platelet-bound complex. Complexes bound to lymphocytes are only 25% as active.  相似文献   

9.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

10.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

11.
Kalafatis M  Beck DO 《Biochemistry》2002,41(42):12715-12728
We have recently shown that amino acid region 307-348 of factor Va heavy chain (42 amino acids, N42R) is critical for cofactor activity and may contain a binding site for factor Xa and/or prothrombin [(2001) J. Biol. Chem. 276, 18614-18623]. To ascertain the importance of this region for factor Va cofactor activity, we have synthesized eight overlapping peptides (10 amino acid each) spanning amino acid region 307-351 of the heavy chain of factor Va and tested them for inhibition of prothrombinase activity. The peptides were also tested for the inhibition of the binding of factor Va to membrane-bound active site fluorescent labeled Glu-Gly-Arg human factor Xa ([OG488]-EGR-hXa). Factor Va binds specifically to membrane-bound [OG488]-EGR-hXa (10nM) with half-maximum saturation reached at approximately 6 nM. N42R was also found to interact with [OG488]-EGR-hXa with half-maximal saturation observed at approximately 230 nM peptide. N42R was found to inhibit prothrombinase activity with an IC50 of approximately 250 nM. A nonapeptide containing amino acid region 323-331 of factor Va (AP4') was found to be a potent inhibitor of prothrombinase. Kinetic analyses revealed that AP4' is a noncompetitive inhibitor of prothrombinase with respect to prothrombin, with a K(i) of 5.7 microM. Thus, the peptide interferes with the factor Va-factor Xa interaction. Displacement experiments revealed that the nonapeptide inhibits the direct interaction of factor Va with [OG488]-EGR-hXa (IC50 approximately 7.5 microM). The nonapeptide was also found to bind directly to [OG488]-EGR-hXa and to increase the catalytic efficiency of factor Xa toward prothrombin in the absence of factor Va. In contrast, a peptadecapeptide from N42R encompassing amino acid region 337-351 of factor Va (P15H) had no effect on either prothrombinase activity or the ability of the cofactor to interact with [OG488]-EGR-hXa. Our data demonstrate that amino acid sequence 323-331 of factor Va heavy chain contains a binding site for factor Xa.  相似文献   

12.
Coagulation factor X, when activated to factor Xa by proteolytic cleavage, itself becomes an active serine protease which participates as a component of the macromolecular prothrombinase complex along with factor Va, phospholipid, and calcium ions. To identify specific structural regions on factor Xa responsible for mediating its function in activating prothrombin, we used 21 synthetic peptides corresponding to 65% of the primary structure of factor X as potential inhibitors of prothrombin activation. Using purified components, thrombin formation was inhibited by seven peptides in a dose-dependent noncompetitive manner. Antibodies to selected inhibitory peptides affinity purified on a factor Xa-agarose column inhibited thrombin formation in a dose-dependent manner, indicating that the corresponding regions on factor Xa are surface-exposed. Kinetic analyses varying the order of reagent addition suggested that peptides 211-222, 254-269, and 263-274 were highly effective in preventing the factor Xa-factor Va interaction. Peptides 275-287 and 415-425 were considered to derive from a distal region involved in substrate binding, based upon mixed inhibition kinetic analyses and assuming that inhibitory peptides not inhibitory in factor Va binding are related to a specific region of substrate interaction. Cross-linking studies confirmed that peptides 263-274 and 263-276 could bind specifically to the light chain of factor V/Va. These findings provide the basis for further pursuing the precise definition of interactive sites on factor Xa using site-directed mutagenesis and molecular modeling.  相似文献   

13.
Isolated peripheral blood monocytes and lymphocytes interact with Factor Va and Factor Xa to form a functional catalytic complex which proteolytically activates prothrombin to thrombin. The kinetics of prothrombin activation were monitored continuously using the fluorescent, reversible thrombin inhibitor, dansylarginine N-(3-ethyl-1,5-pentanediyl)amide, which displays enhanced fluorescence upon binding to thrombin. Incubation of monocytes or lymphocytes with prothrombin, the cofactor (Factor Va), and the enzyme (Factor Xa) in the presence of Ca2+ generated thrombin at rates/cell exceeding those previously obtained with either bovine or human platelets. The rate of thrombin generation by monocytes exceeded that of lymphocytes and increased as monocytes adhered to a surface. Monocyte prothrombinase activity appears to be mediated through interactions, whereby Factor Va forms a receptor for Factor Xa at the monocyte surface. Monocytes possess approximately 16,100 Factor Va binding sites with a dissociation constant (Kd) of 4 X 10(-11) M. In addition, isolated, well washed monocytes and lymphocytes, respectively, contain approximately 61,400 +/- 9,900 and 24,500 +/- 4,800 molecules of Factor V/cell as determined by radioimmunoassay. Bioassay data of mononuclear cell preparations paralleled the radioimmunoassay data. The Factor V associated with washed mononuclear cells appears to be intracellular and not membrane-associated. The release of Factor V, and perhaps other sequestered coagulation factors, by these immunoreactive cells at an inflammatory site, coupled with the ability of these cells to effect thrombin generation may explain the relationship between extravascular fibrin deposition and mononuclear cell accumulation in the pathogenesis of inflammatory lesions.  相似文献   

14.
In order to specifically evaluate the role of Factor Va in the prothrombinase complex, studies of the activation of prothrombin, Fragment 1.2-prethrombin-2, and active-site-blocked meizothrombin were carried out, both in the absence of phospholipid and at concentrations of substrates and Factor Va sufficient to approach saturation in all components. Km values were independent of Factor Va concentrations, whereas kcat (apparent) values approached saturation with respect to Factor Va concentrations. The three respective substrates exhibited the following parameters of kinetics (Km, microM; kcat, s-1 at saturating [Factor Va]): prothrombin (9.0 +/- 0.4; 31 +/- 1); Fragment 1.2-prethrombin-2 (5.4 +/- 0.4; 13 +/- 2); and meizothrombin (3.6 +/- 0.3; 51 +/- 5). Models of kinetics were constructed to interpret the results, and two of these were formally consistent with experimental results. Both models indicated that the variation of kcat(app) with concentrations of Factor Va reflects the formation of a Factor Va-Factor Xa binary complex. Analysis of kinetics indicated Kd values for this interaction of 1.3 +/- 0.1, 3.0 +/- 0.5, and 1.0 +/- 0.1 microM for the three respective substrates. The models differed in the interpretation of Km. One indicated that Km reflects a binary interaction between Factor Xa and prothrombin, whereas the other indicated a binary interaction between Factor Va and prothrombin. Both indicated that two of the three possible binary interactions between the three components would be reflected in Km and kcat values but not the third. To distinguish these models, the binary interactions were studied by extrinsic fluorescence (Va.Xa), light-scattering (Factor Va.prothrombin), and competition kinetics (Xa.II). The first two interactions were detected and were characterized by Kd values of 2.7 +/- 0.1 microM (Va.Xa) and 8.8 +/- 0.8 microM (Factor Va.prothrombin). No active-site-dependent interaction between prothrombin and Factor Xa could be detected in the absence of Factor Va. The results of these studies suggest that Factor Va interacts with both Factor Xa and prothrombin and effectively presents one to the other in the formation of a ternary enzyme-substrate-cofactor complex. In addition, a comparison of the parameters of kinetics of conversion of prothrombin and its intermediates indicates that meizothrombin is the major intermediate of prothrombin activation in the absence, as well as in the presence of phospholipid.  相似文献   

15.
Interaction of prothrombin with factor Va-phospholipid complexes   总被引:1,自引:0,他引:1  
The effects of factor Va and the phospholipid-binding fragment of factor Va [factor Va light chain (LC), Mr 80000] on the binding of prothrombin, factor X, and factor Xa to phospholipid vesicles are reported. Equilibrium binding experiments were performed that utilized large-volume vesicles, which can be removed from the bulk solution by centrifugation. Factor Va decreased the dissociation constant of the prothrombin-phospholipid complex 50-fold, from 2.0 X 10(-7) M to 4.0 X 10(-9) M. For the factor X-phospholipid complex the decrease was 60-fold (1.8 X 10(-7) M to 3.0 X 10(-9) M) and for factor Xa, 160-fold (1.6 X 10(-7) M to 1.0 X 10(-9) M). The ratios of moles of protein bound to moles of total added factor Va at saturation of phospholipid-bound factor Va indicate an 1:1 stoichiometric complex of either factor Xa, factor X, or prothrombin and phospholipid-bound factor Va. In the presence of factor Va LC, the dissociation constants of factor Xa- and prothrombin-phospholipid complexes were increased, while the maximal protein-binding capacities of the vesicles were not affected by factor Va LC. The data suggest a competitive interaction between factor Xa and factor Va LC binding as well as between prothrombin and factor Va LC binding at the phospholipid surface. From this, it is concluded that the phospholipid-binding fragment of factor Va alone does not serve as the binding site for interactions of factor Xa and prothrombin with factor Va.  相似文献   

16.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

17.
Activated coagulation factor V functions as a cofactor to factor Xa in the conversion of prothrombin to thrombin. Based on the introduction of extra carbohydrate side chains in recombinant factor V, we recently proposed several regions in factor Va to be important for factor Xa binding. To further define which residues are important for factor Xa binding, we prepared fifteen recombinant factor V variants in which clusters of charged amino acid residues were mutated, mainly to alanines. The factor V variants were expressed in COS-1 cells, and their functional properties evaluated in a prothrombinase-based assay, as well as in a direct binding test. Four of the factor V variants, 501A/510A/511D, 501A/510A/511D/513A, 513A/577A/578A, and 501A/510A/511D/513A/577A/578A exhibited markedly reduced factor Xa-cofactor activity tested in the prothrombinase assay, and reduced binding affinity as judged by the direct binding assay. These factor Va variants were normally cleaved at Arg-506 by activated protein C, and the interaction between the factor Xa-factor Va complex and prothrombin was unaffected by the introduced mutations. Based on the integration of all available data, we propose a key factor Xa binding surface to be centered on Arg-501, Arg-510, Ala-511, Asp-513, Asp-577, and Asp-578 in the factor Va A2 domain. These residues form an elongated charged factor Xa binding cluster on the factor Va surface.  相似文献   

18.
The molecular basis of the substrate and inhibitor specificity of factor Xa, the serine proteinase of the prothrombinase complex, was investigated by constructing two mutants of human antithrombin (HAT) in which the reactive site loop of the serpin from the P4-P4' site was replaced with the corresponding residues of the two factor Xa cleavage sites in prothrombin (HAT/Proth-1 and HAT/Proth-2). These mutants together with prethrombin-2, the smallest zymogen form of thrombin containing only the second factor Xa cleavage site, were expressed in mammalian cells, purified to homogeneity and characterized in kinetic reactions with factor Xa in both the absence and presence of cofactors; factor Va, high affinity heparin and pentasaccharide fragment of heparin. HAT/Proth-1 inactivated factor Xa approximately 3-4-fold better than HAT/Proth-2 in either the absence or presence of heparin cofactors. In the absence of a cofactor, factor Xa reacted with the HAT/Proth-2 and prethrombin-2 with similar second-order rate constants (approximately 2-3x10(2) M(-1)s(-1)). Pentasaccharide catalyzed the inactivation rate of factor Xa by the HAT mutants 300-500-fold. A similar 10(4)-10(5)-fold enhancement in the reactivity of factor Xa with prethrombin-2 and the HAT mutants was observed in the presence of the cofactors Va and heparin, respectively. Factor Va did not influence the reactivity of factor Xa with either one of the HAT mutants. These results suggest that (1) in the absence of a cofactor, the P4-P4' residues of HAT and prethrombin-2 primarily determine the specificity reactions with factor Xa, (2) factor Va binding to factor Xa is not associated with allosteric changes in the catalytic pocket of enzyme that would involve interactions with the P4-P4' binding sites, and (3) similar to allosteric activation of HAT by heparin, a role for factor Va in the prothrombinase complex may involve rearrangement of the residues surrounding the scissile bond of the substrate to facilitate its optimal docking into the catalytic pocket of factor Xa.  相似文献   

19.
The inactivation of Factor Va by plasmin was studied in the presence and absence of phospholipid vesicles and calcium ions. The cleavage patterns of bovine Factor Va and its isolated subunits were analyzed using polyacrylamide gel electrophoresis, and the progress of inactivation was monitored by clotting assays and measurements of prothrombin activation using 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5-penta nediyl)amide. In addition, the ability of prothrombin and Factor Xa to protect Factor Va from inactivation by human plasmin was examined. The data presented indicate that the cofactor Factor Va is inactivated rapidly upon its interaction with human plasmin. The rate of inactivation is significantly enhanced in the presence of phospholipid vesicles, suggesting that the inactivation process is a membrane-bound phenomenon. The isolated D component (heavy chain of factor Va) was found to be slowly degraded by human plasmin, giving rise to cleavage products different from those obtained with activated protein C and Factor Xa. However, the 48- and 30-kDa fragments obtained from human plasmin degradation of component E (light chain of Factor Va) appear to be similar to those obtained following the proteolysis of the same subunit by activated protein C and Factor Xa.  相似文献   

20.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号