首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
One postulated mechanism for the reduction in stress tolerance with aging is a decline in the regulation of stress-responsive genes, such as inducible heat shock protein 72 (HSP70). Increased levels of oxidative stress are also associated with aging, but it is unclear what impact a prooxidant environment might have on HSP70 gene expression. This study utilized a superoxide dismutase/catalase mimetic (Eukarion-189) to evaluate the impact of a change in redox environment on age-related HSP70 responses to a physiologically relevant heat challenge. Results demonstrate that liver HSP70 mRNA and protein levels are reduced in old compared with young rats at selected time points over a 48-h recovery period following a heat-stress protocol. While chronic systemic administration of Eukarion-189 suppressed hyperthermia-induced liver HSP70 mRNA expression in both age groups, HSP70 protein accumulation was blunted in old rats but not in their young counterparts. These data suggest that a decline in HSP70 mRNA levels may be responsible for the reduction in HSP70 protein observed in old animals after heat stress. Furthermore, improvements in redox status were associated with reduced HSP70 mRNA levels in both young and old rats, but differential effects were manifested on protein expression, suggesting that HSP70 induction is differentially regulated with aging. These findings highlight the integrated mechanisms of stress protein regulation in eukaryotic organisms responding to environmental stress, which likely involve interactions between a wide range of cellular signals.  相似文献   

2.
Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required.  相似文献   

3.
One of the major impacts of climate change has been the marked rise in global temperature. Recently, we demonstrated that high temperatures (1-week exposure) disrupt prooxidant-antioxidant homeostasis and promote cellular apoptosis in the American oyster. In this study, we evaluated the effects of seasonal sea surface temperature (SST) on tissue morphology, extrapallial fluid (EPF) conditions, heat shock protein-70 (HSP70), dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of RNS), catalase (CAT), superoxide dismutase (SOD) protein expressions, and cellular apoptosis in gills and digestive glands of oysters collected on the southern Texas coast during the winter (15 °C), spring (24 °C), summer (30 °C), and fall (27 °C). Histological observations of both tissues showed a notable increase in mucus production and an enlargement of the digestive gland lumen with seasonal temperature rise, whereas biochemical analyses exhibited a significant decrease in EPF pH and protein concentration. Immunohistochemical analyses showed higher expression of HSP70 along with the expression of DNP and NTP in oyster tissues during summer. Intriguingly, CAT and SOD protein expressions exhibited significant upregulation with rising seasonal temperatures (15 to 27 °C), which decreased significantly in summer (30 °C), leaving oysters vulnerable to oxidative and nitrative damage. qRT-PCR analysis revealed a significant increase in HSP70 mRNA levels in oyster tissues during the warmer seasons. In situ TUNNEL assay showed a significant increase in apoptotic cells in seasons with high temperature. These results suggest that elevated SST induces oxidative/nitrative stress through the overproduction of ROS/RNS and disrupts the antioxidant system which promotes cellular apoptosis in oysters.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01232-2.  相似文献   

4.
We have recently identified and cloned a novel member of mitogen-activated protein kinase superfamily protein, MOK (Miyata, Y., Akashi, M., and Nishida, E. (1999) Genes Cells 4, 299-309). To address its regulatory mechanisms, we searched for cellular proteins that specifically associate with MOK by co-immunoprecipitation experiments. Several cellular proteins including a major 90-kDa molecular chaperone HSP90 were found associated with MOK. Treatment of cells with geldanamycin, an HSP90-specific inhibitor, rapidly decreased the protein level of MOK, and the decrease was attributed to enhanced degradation of MOK through proteasome-dependent pathways. Our data suggest that the association with HSP90 may regulate intracellular protein stability and solubility of MOK. Experiments with a series of deletion mutants of MOK indicated that the region encompassing the protein kinase catalytic subdomains I-IV is required for HSP90 binding. Closely related protein kinases (male germ cell-associated kinase and male germ cell-associated kinase-related kinase) were also found to associate with HSP90, whereas conventional mitogen-activated protein kinases (extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase/stress-activated protein kinase) were not associated with HSP90. In addition, we found that other molecular chaperones including Cdc37, HSC70, HSP70, and HSP60 but not GRP94, FKBP52, or Hop were detected specifically in the MOK-HSP90 immunocomplexes. These results taken together suggest a role of a specific set of molecular chaperones in the stability of signal-transducing protein kinases.  相似文献   

5.
Stress proteins (heat shock proteins, HSP) play essential roles in folding, assembly and translocation of polypeptides and also in maintenance of the integrity of polypeptides as molecular chaperones. Since long-lasting hyperglycemia causes modification of cellular proteins, it is possible that expression of molecular chaperones may be altered during the course of diabetes. Here, we examined the cellular levels of stress proteins such as HSP105, HSP90 and HSC70/HSP70 in various tissues of streptozotocin-induced diabetic rats. In comparison to controls, the levels of HSC70 were markedly decreased in the liver but not in the brain, adrenal gland and pancreas of diabetic rats. The levels of HSP105 and HSP90 were not significantly changed in these tissues of diabetic rats. Furthermore, the induction of HSP70 as well as HSC70 by hyperthermia was significantly reduced in the liver and adrenal gland of diabetic rats. These results suggested that the expression and induction of HSC70/HSP70 may be altered during the course of diabetic disease and may result in impairment of the cytoprotective ability of diabetic rats.  相似文献   

6.
Most experimental procedures on molluscs are done after acclimatization of wild animals to lab conditions. Similarly, short-term acclimation is often unavoidable in a field survey when biological analysis cannot be done within the day of sample collection. However, acclimatization can affect the general physiological condition and particularly the immune cell responses of molluscs. Our aim was to study the changes in the hemocyte characteristics of the Pacific oyster Crassostrea gigas and the carpet shell clam Ruditapes decussatus acclimated 1 or 2 days under emersed conditions at 14 ± 1 °C and for 1, 2, 7, or 10 days to flowing seawater conditions (submerged) at 9 ± 1 °C, when compared to hemolymph withdrawn from organisms sampled in the field and immediately analyzed in the laboratory (unacclimated). The hemocyte characteristics assessed by flow cytometry were the total (THC) and differential hemocyte count, percentage of dead cells, phagocytosis, and reactive oxygen species (ROS) production. Dead hemocytes were lower in oysters acclimated both in emersed and submerged conditions (1%-5%) compared to those sampled in the field (7%). Compared to oysters, the percentage of dead hemocytes was lower in clams (0.4% vs. 1.1%) and showed a tendency to decrease during acclimatization in both emersed and submerged conditions. In comparison to organisms not acclimated, the phagocytosis of hemocytes decreased in both oysters and clams acclimated under submerged conditions, but was similar in those acclimated in emersed conditions. The ROS production remained stable in both oysters and clams acclimated in emersed conditions, whereas in submerged conditions ROS production did not change in both the hyalinocytes and granulocytes of oysters, but increased in clams. In oysters, the THC decreased when they were acclimated 1 and 2 days in submerged conditions and was mainly caused by a decrease in granulocytes, but the decrease in THC in oysters acclimated 2 days in emersed conditions was caused by a decrease in hyalinocytes and small agranular cells. In clams, the THC was significantly lower in comparison to those not acclimated, regardless of the conditions of the acclimatization. These findings demonstrate that hemocyte characteristics were differentially affected in both species by the tested conditions of acclimatization. The phagocytosis and ROS production in clams and phagocytosis in oysters were not different in those acclimated for 1 day under both conditions, i.e. emersed and submerged, and those sampled in the field (unacclimated). The THC was significantly affected by acclimatization conditions, so the differences between clams and oysters should be considered in studies where important concentrations of hemocytes are required. The difference in the immune response between both species could be related to their habitat (epifaunal vs. infaunal) and their ability of resilience to manipulation and adaptation to captivity. Our results suggest that functional characteristics of hemocytes should be analyzed in both oysters and clams during the first 1 or 2 days, preferably acclimated under emersed rather than submerged conditions.  相似文献   

7.
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.  相似文献   

8.
Attempts to introduce infectious or foreign material into oysters and other bivalve mollusks usually involve force or trauma because of immediate, prolonged adduction of the tightly closing valves. The soft-shell clam, Mya arenaria, is unable to seal its valves completely and relaxes readily, exposing soft tissue and a large siphon. This species is free from fouling organisms and is readily available at all seasons in the New England and mid-Atlantic areas. Suspensions of five strains of Vibrio sp. that cause bacillary necrosis in larval and juvenile bivalve mollusks were injected into the heart, siphon tissue, and the incurrent and excurrent siphon lumina of soft-shell clams. All vibrio strains caused significant mortality, usually within 2 days. Heaviest losses resulted from heart and excurrent siphon injections. No mortality occurred in control clams injected with seawater, broth, Serratia sp., and Escherichia coli. The soft-shell clam appears to be a useful animal for testing the pathogenicity of marine microorganisms for bivalve mollusks.  相似文献   

9.
The oxidative stress theory of aging offers the best mechanistic elucidation of the aging phenomenon and other age-related diseases. The susceptibility of an individual depends on the antioxidant status of the body. In humans, the antioxidant system includes a number of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), nonenzymatic antioxidants such as glutathione (GSH), protein –SH, ascorbic acid, and uric acid, and dietary antioxidants. Antioxidant enzymes form the first line of defense against reactive oxygen species. In an earlier report, we showed that the plasma antioxidant potential in humans decreases as a function of age and that there are compensatory mechanisms operating in the body which are induced to maintain the antioxidant capacity during aging. In the present study, we report the relationship between human aging and antioxidant enzymes SOD and CAT; we also correlate the activity of these enzymes with the antioxidant capacity of the plasma. Our results show a significantly higher plasma SOD and CAT activity in older individuals than in younger individuals. The induction in activity of SOD and CAT during human aging may be a compensatory response of the individual to an increased oxidative stress.  相似文献   

10.
Co-chaperones help to maintain cellular homeostasis by modulating the activities of molecular chaperones involved in protein quality control. The HSP70/HSP90-organizing protein (HOP) is a co-chaperone that cooperates with HSP70 and HSP90 in catalysis of protein folding and maturation in the cytosol. We show here that HOP has ATP-binding activity comparable to that of HSP70/HSP90, and that HOP slowly hydrolyzes ATP. Analysis of deletion mutants revealed that the ATPase domain of HOP is in the N-terminal TPR1-DP1-TPR2A segment. In addition, HOP changes its conformation in the presence of ATP. These results indicate that HOP is a unique co-chaperone that undergoes an ATP-dependent conformational change.  相似文献   

11.
Decreasing the temperature to 30°C is accompanied by significant enhancement of α(2C)-AR plasma membrane levels in several cell lines with fibroblast phenotype, as demonstrated by radioligand binding in intact cells. No changes were observed on the effects of low-temperature after blocking receptor internalization in α(2C)-AR transfected HEK293T cells. In contrast, two pharmacological chaperones, dimethyl sulfoxide and glycerol, increased the cell surface receptor levels at 37°C, but not at 30°C. Further, at 37°C α(2C)-AR is co-localized with endoplasmic reticulum markers, but not with the lysosomal markers. Treatment with three distinct HSP90 inhibitors, radicicol, macbecin and 17-DMAG significantly enhanced α(2C)-AR cell surface levels at 37°C, but these inhibitors had no effect at 30°C. Similar results were obtained after decreasing the HSP90 cellular levels using specific siRNA. Co-immunoprecipitation experiments demonstrated that α(2C)-AR interacts with HSP90 and this interaction is decreased at 30°C. The contractile response to endogenous α(2C)-AR stimulation in rat tail artery was also enhanced at reduced temperature. Similar to HEK293T cells, HSP90 inhibition increased the α(2C)-AR contractile effects only at 37°C. Moreover, exposure to low-temperature of vascular smooth muscle cells from rat tail artery decreased the cellular levels of HSP90, but did not change HSP70 levels. These data demonstrate that exposure to low-temperature augments the α(2C)-AR transport to the plasma membrane by releasing the inhibitory activity of HSP90 on the receptor traffic, findings which may have clinical relevance for the diagnostic and treatment of Raynaud Phenomenon.  相似文献   

12.
A decline in an organism's ability to cope with stress through acute response protein expression may contribute to stress intolerance with aging. We investigated the influence of aging on stress tolerance and the capacity to synthesize the 70-kDa heat shock protein (HSP70) in young and old rats exposed to an environmental heating protocol. Livers were assessed for injury and HSP70 expression after heat stress by use of immunohistochemical and immunoblotting techniques. The inducible HSP70 response in the cytoplasm and nucleus was markedly reduced with age at several time points over a 48-h recovery period, although senescent rats were able to strongly express HSP70 early in recovery. Older animals had extensive zone-specific liver injury, which corresponded to the diminished HSP70 response observed in these regions, and a significant reduction in thermotolerance compared with their young counterparts. These data highlight the regional nature of stress-induced injury and HSP70 expression in the liver and the impact of aging on these responses. Furthermore, the results suggest a functional link between the age-related decrements in the expression of inducible HSP70 and the pathophysiological responses to heat stress.  相似文献   

13.
Skeletal muscle atrophy and weakness are major causes of frailty in the elderly. Functional deficits in muscles of old humans and rodents are associated with attenuated production of heat shock proteins (HSPs) after exercise, and transgenic overexpression of HSP70 reverses this functional decline. We hypothesized that training would increase HSP70 content of muscle in adult and old wild-type mice and that this would protect against the development of age-related functional deficits. A 10-wk treadmill training protocol at 15 m/min, for 15 min, 3 days/wk resulted in a significant increase in HSP70 content of muscles of adult mice. Muscles of old untrained mice demonstrated a significant increase in HSP70 protein content and a reduction in HSP70 mRNA content compared with adult untrained mice. Training for 12 mo starting at age 12-14 mo old or for 10 wk starting from age 24 mo old resulted in modification of HSP70 protein and mRNA content to levels of adult mice. Training did not change force generation of extensor digitorum longus muscles of old mice or improve recovery after damaging contractions. The twofold increase in HSP70 content in muscles of adult mice after training may have not been sufficient to provide protection in this instance.  相似文献   

14.
Loss-of-function mutations in the KCNQ4 channel cause DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss. Previous studies have demonstrated that the majority of the pathogenic KCNQ4 mutations lead to trafficking deficiency and loss of KCNQ4 currents. Over the last two decades, various strategies have been developed to rescue trafficking deficiency of pathogenic mutants; the most exciting advances have been made by manipulating activities of molecular chaperones involved in the biogenesis and quality control of the target protein. However, such strategies have not been established for KCNQ4 mutants and little is known about the molecular chaperones governing the KCNQ4 biogenesis. To identify KCNQ4-associated molecular chaperones, a proteomic approach was used in this study. As a result, two major molecular chaperones, HSP70 and HSP90, were identified and then confirmed by reciprocal co-immunoprecipitation assays, suggesting that the HSP90 chaperone pathway might be involved in the KCNQ4 biogenesis. Manipulating chaperone expression further revealed that two different isoforms of HSP90, the inducible HSP90α and the constitutive HSP90β, had opposite effects on the cellular level of the KCNQ4 channel; that HSP40, HSP70, and HOP, three key components of the HSP90 chaperone pathway, were crucial in facilitating KCNQ4 biogenesis. In contrast, CHIP, a major E3 ubiquitin ligase, had an opposite effect. Collectively, our data suggest that HSP90α and HSP90β play key roles in controlling KCNQ4 homeostasis via the HSP40-HSP70-HOP-HSP90 chaperone pathway and the ubiquitin-proteasome pathway. Most importantly, we found that over-expression of HSP90β significantly improved cell surface expression of the trafficking-deficient, pathogenic KCNQ4 mutants L274H and W276S. KCNQ4 surface expression was restored by HSP90β in cells mimicking heterozygous conditions of the DFNA2 patients, even though it was not sufficient to rescue the function of KCNQ4 channels.  相似文献   

15.
Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica) reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria). The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.  相似文献   

16.
17.
Cytosolic/nuclear molecular chaperones of the heat shock protein families HSP90 and HSC70 are conserved and essential proteins in eukaryotes. These proteins have essentially been implicated in the innate immunity and abiotic stress tolerance in higher plants. Here, we demonstrate that both chaperones are recruited in Arabidopsis (Arabidopsis thaliana) for stomatal closure induced by several environmental signals. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are compromised in the dark-, CO(2)-, flagellin 22 peptide-, and abscisic acid (ABA)-induced stomatal closure. HSC70-1 and HSP90 proteins are needed to establish basal expression levels of several ABA-responsive genes, suggesting that these chaperones might also be involved in ABA signaling events. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are hypersensitive to ABA in seed germination assays, suggesting that several chaperone complexes with distinct substrates might tune tissue-specific responses to ABA and the other biotic and abiotic stimuli studied. This study demonstrates that the HSC70/HSP90 machinery is important for stomatal closure and serves essential functions in plants to integrate signals from their biotic and abiotic environments.  相似文献   

18.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

19.
HSP70 family members are highly conserved proteins that function as molecular chaperones. Their principle role is to aid protein folding and promote the correct cellular localisations of their respective substrates. The function of HSP70 isoforms can be exhibited independently or with the HSP90 chaperone system in which HSP70 is important for substrate recruitment. In addition to their chaperone role, HSP70 isoforms promote cell survival by inhibiting apoptosis at multiple points within both the intrinsic and extrinsic cell death pathways. Consistent with this cytoprotective function, increased expression of HSP70 isoforms is commonly associated with the malignant phenotype. We recently reported that dual silencing of the major constitutive (HSC70) and inducible (HSP72) isoforms of HSP70 in cancer cells could phenocopy the effects of a pharmacologic HSP90 inhibitor to induce proteasome-dependent degradation of HSP90 client proteins CRAF, CDK4 and ERBB2. This was accompanied by a G1 cell cycle arrest and extensive apoptosis which was not seen in non-tumorigenic human cell lines. Here we discuss the possible implications of our research for the development of HSP70 family modulators which offer not only the possibility of inhibiting HSP70 activity but also the simultaneous inhibition of HSP90, resulting in extensive tumour-specific apoptosis.  相似文献   

20.
We report on the effects of previous foraging experience on prey-selection by the bivalve feeding polychaete Halla okudai, including whether there was evidence of frequency-dependent predation. Three separate batches of H. okudai were maintained for 30 days on clams, mussels, or oysters, before being offered a choice among these three prey. Initially individuals from all three treatments consumed more clams than mussels, and no oysters. As the number of clams was depleted the polychaetes shifted their diet to include a greater proportion of mussels, but even after 20 days oysters were only eaten by polychaetes that had been previously acclimated to them. Nevertheless, polychaetes from each treatment inspected significantly more of the prey species to which they had initially been acclimated, suggesting that previous experience may increase the likelihood of certain prey being detected. When individuals of H. okudai were repeatedly offered the same prey species, handling time did not decrease (and therefore prey profitability did not increase) with experience, which may be because H. okudai paralyses its prey with toxic mucus. Since repeated experience of the same prey species gives no advantage in terms of reduced handling time, we suggest this may be why this species does not show frequency-dependent prey-selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号