首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human keratinocytes in culture were labelled with 14C-dihomo-γ-linolenic acid, 14C-arachidonic acid or 14C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neural lipids a substantial amount, and as free unesterifed fatty acids only a minor amount. The most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-γ-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerosl as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.  相似文献   

2.
Seeds from mature flowers of Heracleum laciniatum were collected locally (Tromsø, Norway). Seed coats were removed and the seeds were analyzed for their content of free, free plus ester-conjugate, and total indole-3-acetic acid (IAA) by quantitative gas chromatography-mass spectrometry. Seeds contained high levels of free and amide-linked IAA relative to other dicotyledonous seeds for which values have been published. The major amide conjugate in this material was identified as indole-3-acetylaspartate by gas chromatography-mass spectrometry of its bis-methyl ester.  相似文献   

3.
Summary 3-Indoleacetic acid (IAA) and 3-indolelactic acid (ILA) have been identified as tryptophan (Trp) catabolites in Azotobacter vinelandii cultures. IAA production depends linearly on initial Trp concentration within the range 0–0.05% Trp, decreases in the presence of 10 mM 2-oxoglutarate and is always smaller than ILA production. Tryptophan aminotransferase activity, found in the cultures, could explain the first step of Trp transformation into IAA. In order to rationalize the formation of ILA, the presence of the enzyme indolelactate dehydrogenase in A. vinelandii is suggested.  相似文献   

4.
A series of C-3 phenyl- and heterocycle-substituted derivatives of C-3 deoxybetulinic acid and C-3 deoxybetulin was designed and synthesized as HIV-1 maturation inhibitors (MIs) and evaluated for their antiviral activity and cytotoxicity in cell culture. A 4-subsituted benzoic acid moiety was identified as an advantageous replacement for the 3′3′-dimethylsuccinate moiety present in previously disclosed MIs that illuminates new aspects of the topography of the pharmacophore. The new analogs exhibit excellent in vitro antiviral activity against wild-type (wt) virus and a lower serum shift when compared with the prototypical HIV-1 MI bevirimat (1, BVM), the first MI to be evaluated in clinical studies. Compound 9a exhibits comparable cell culture potency toward wt virus as 1 (WT EC50 = 16 nM for 9a compared to 10 nM for 1). However, the potency of 9a is less affected by the presence of human serum, while the compound displays a similar pharmacokinetic profile in rats to 1. Hence 9a, the 4-benzoic acid derivative of deoxybetulinic acid, represents a new starting point from which to explore the design of a 2nd generation MI.  相似文献   

5.
(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate.  相似文献   

6.
4-Methoxygentisic acid was an intermediate formed when Arthrobacter degraded, 2,4,5-trimethoxybenzoic acid. Isolates of Pseudomonas and Arthrobacter from soil grew at the expense of 3-methoxycrotonic acid. Evidence is presented that enzymatic hydration, with elimination of methanol, accounted for replacement of the methoxyl group of 3-methoxycrotonic acid and also of one methoxyl group of 2,4,5-trimethoxybenzoic acid.  相似文献   

7.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator possessing cyclic phosphate ring, which is necessary for its specific biological activities. To stabilize cyclic phosphate ring of cPA, we synthesized a series of cPA derivatives. We have shown that racemic 3-S-cPA, with a phosphate oxygen atom replaced with a sulfur atom at the sn-3, was a more effective autotaxin (ATX) inhibitor than cPA. In this study, we showed that racemic 3-S-cPA also had potent biological activities such as inhibition of cancer cell migration, suppression of the nociceptive reflex, and attenuation of ischemia-induced delayed neuronal cell death in the hippocampal CA1. Moreover, we synthesized both enantiomers of palmitoleoyl derivative of 3-S-cPA, and found that the chirality of 3-S-cPA is not involved in ATX inhibition. Based on these findings, racemic 3-S-cPA is suggested as an effective therapeutic compound like cPA.  相似文献   

8.
Datura innoxia plants were fed the R- and S-isomers of [3-14C]-3-hydroxy-3-phenylpropanoic acid, and [3-14C]cinnamic acid along with dl-[4-3H]phenylalanine. The hyoscyamine and scopolamine isolated from the plants 7 days later were labeled with tritium, but devoid of 14C, indicating that 3-hydroxy-3-phenylpropanoic acid and cinnamic acid are not intermediates between phenylalanine and tropic acid. The [3H] tropic acid obtained by hydrolysis of the hyoscyamine was degraded and shown to have essentially all its tritium located at the para position of its phenyl group, a result consistent with previous work.  相似文献   

9.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

10.
Sialic acid produced an interfering color in an assay designed for measuring 3-deoxyoctulosonic acid. The color yield from sialic acid was not as high as that from 3-deoxyoctulosonic acid but was high enough to cause concern about problems arising when sialic acid-containing substances are present in preparations of bacterial lipopolysaccharides. The instabilityof 3-deoxyoctulosonic acid in acidic media led to reduced color yields. In general, the results suggested that data generated by the application of the thiobarbituric acid method to the measurement of 3-deoxyoctulosonic acid should be approached with caution.  相似文献   

11.
4-Methoxygentisic acid was an intermediate formed when Arthrobacter degraded, 2,4,5-trimethoxybenzoic acid. Isolates of Pseudomonas and Arthrobacter from soil grew at the expense of 3-methoxycrotonic acid. Evidence is presented that enzymatic hydration, with elimination of methanol, accounted for replacement of the methoxyl group of 3-methoxycrotonic acid and also of one methoxyl group of 2,4,5-trimethoxybenzoic acid.  相似文献   

12.
A new metabolite of the plant growth substance indole-3-acetic acid has been extracted from Zea mays seedlings and characterized as the 7'-O-beta-D-glucopyranoside of 7-hydroxy-2-oxindole-3-acetic acid. This compound was the major product formed from [5-3H] 2-oxindole-3-acetic acid, incubated with intact plants or root and coleoptile sections. Identification was by gas chromatography-mass spectrometry of the trimethylsilyl derivative and by analysis of the hydrolysis products. A synthesis is reported for 7-hydroxy-2-oxindole-3-acetic acid. These results and prior work demonstrate the following catabolic route for indole-3-acetic acid in Zea: indole-3-acetic acid----2-oxindole-3-acetic acid----7-hydroxy-2-oxindole-3-acetic acid----7-hydroxy-2-oxindole-3-acetic acid glucoside.  相似文献   

13.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

14.
Summary Alcaligenes eutrophus mutant strain R3, which is a spontaneous revertant to prototrophy of an isoleucine-auxotrophic mutant of the wild-type strain H16, accumulated a copolyester consisting of 3-hydroxybutyric acid (3HB) as main constituent and of 3-hydroxyvaleric acid (3HV), i.e. poly(3HB-co-3HV), as the only other constituent from various single unrelated substrates, which were provided in excess, after a nutrient essential for growth was depleted in the medium. Poly(SHB-co-3HV) was produced from fructose, gluconate, succinate, acetate or lactate during cell starvation of the nitrogen, sulphur or magnesium source. Although 3HV amounted to only 8 mol% of the constituents of the polyester, this study provides a general rationale for construction and utilization of mutants of poly(3HB)-accumulating bacteria that are altered in the metabolism of branched-chain amino acids for the production of poly(3HB-co-3HV) from single unrelated substrates. Offprint requests to: A. Steinbüchel  相似文献   

15.
Abstract: 4-Hydroxy-3-methoxyphenylglycol (HMPG) labelled with 14C was used to study the metabolic fate of HMPG in six healthy volunteers. Besides conjugation and oxidation to 4-hydroxy-3-methoxymandelic acid (HMMA, VMA) a minor portion, 8.4 ± 1.1% (mean ± SEM) was excreted as 14C-labelled vantllic acid (VA). To study if VA was formed from HMPG or HMMA (VMA), deuterium-labelled HMPG ([2H3]HMPG) and HMMA ([2H6]HMMA) were simultaneously injected intravenously to seven healthy volunteers. The recovery of [2H3]VA from [2H3]HMPG was 8.3 ± 2.1% and the recovery of [2H6]VA from [2H6]HMMA was 9.0 ± 2.1%. The 2H-labelled VAs were probably formed by a decar boxylation reaction, in the case of HMPG after previous oxidation to HMMA.  相似文献   

16.
Administering 3-aminopicolinate to rats starved for 24h immediately initiated a progressive increase in blood glucose concentration. Hyperglycaemia was not the result of glycogenolysis, nor was it due to an inhibition of insulin release, since it caused marked hyperinsulinaemia. The rate of [6-3H]glucose disappearance from the blood of the intact rat was not altered by 3-aminopicolinate, indicating that it does not cause hyperglycaemia by inhibiting glucose utilization or by causing a redistribution of total body glucose. 3-Aminopicolinate increased the rate of fall in the specific radioactivity of blood [6-3H]-glucose, indicating dilution of the glucose pool by newly synthesized glucose. The rate of 14C incorporation into blood glucose from [14C]alanine and [14C]lactate was increased 90 and 35% respectively, whereas that from [14C]glycerol and [14C]xylitol was either unaffected or slightly decreased by 3-aminopicolinate administration. Liver phosphoenolpyruvate of rats was increased to four to seven times the normal concentration 10min to 1h after injections of 50–300mg of 3-aminopicolinate/kg body wt. and the amounts of 2-phosphoglycerate and 3-phosphoglycerate were increased to three to four times normal. The high concentrations of liver phosphoenolpyruvate, 2-phosphoglycerate and 3-phosphoglycerate, as well as the enhancement of gluconeogenesis from lactate and alanine, but not from glycerol or xylitol, is compatible with an enhancement of gluconeogenesis at a step between pyruvate and the triose phosphates. After injections of 3-aminopicolinate, liver malate, citrate, aspartate, alanine, lactate and pyruvate were also increased, but to lesser extents than was phosphoenolpyruvate. The increases in some of these metabolites were approximated after an intravenous infusion of glucose, so their elevated concentration after 3-aminopicolinate administration could have been, in part, a consequence of the hyperglycaemia. The possibility is considered that 3-aminopicolinate stimulates gluconeogenesis in vivo by facilitating Fe2+ activation of phosphoenolpyruvate carboxykinase as it does with the purified enzyme in vitro [MacDonald & Lardy (1978) J. Biol. Chem. 253, 2300–2307]. In this effect 3-aminopicolinate may simulate the physiological role of the naturally occurring ferroactivator protein [Bentle & Lardy (1977) J. Biol. Chem. 252, 1431–1440].  相似文献   

17.
Nutritional factors influence bone development. Previous studies demonstrated that bone mass significantly increased with suppressed bone resorption in early life of rats fed with AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for 2 weeks. However, the effects of increased phenolic acids in animal serum due to this diet on bone and bone resorption were unclear. This in vitro and in ex vivo study examined the effects of phenolic hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on osteoclastic cell differentiation and bone resorption. We cultured murine osteoclast (macrophage) cell line, RAW 264.7 cells, and hematopoietic osteoclast progenitor cells (isolated from 4-week-old C57BL6/J mice) with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL). Morphologic studies showed decreased osteoclast number with treatment of 2.5% mouse serum from BB diet–fed animals compared with those treated with serum from standard casein diet–fed mice in both RAW 264.7 cell and primary cell cultures. HA and 3-3-PPA, but not 3–4-PPA, had dose-dependent suppressive effects on osteoclastogenesis and osteoclast resorptive activity in Corning osteo-assay plates. Signaling pathway analysis showed that after pretreatment with HA or 3-3-PPA, RANKL-stimulated increase of osteoclastogenic markers, such as nuclear factor of activated T-cells, cytoplasmic 1 and matrix metallopeptidase 9 gene/protein expression were blunted. Inhibitory effects of HA and 3-3-PPA on osteoclastogenesis utilized RANKL/RANK independent mediators. The study revealed that HA and 3-3-PPA significantly inhibited osteoclastogenesis and bone osteoclastic resorptive activity.  相似文献   

18.
Gamma-hydroxybutyric acid (GHB) is a drug of abuse, a therapeutic, and purportedly a neurotransmitter with a complex mechanism of action in vivo due to direct actions at GABA(B) as well as GHB receptors and because of its metabolism to GABA. Herein, we describe 3-ethers of 3-hydroxyphenylacetic acid, which have relatively high affinity at GHB sites, no significant affinity at GABA receptors, and would not be expected to be rapidly metabolized to GABAergic ligands. The selectivity of these compounds (UMB108, UMB109, and UMB119) could prove to be useful for studying the biology of GHB receptors, free from GABAergic effects.  相似文献   

19.
1. Bovine milk xanthine oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2) oxidises 3-hydroxyxanthine slowly to 3-hydroxyuric acid; the 1-methyl derivative of 3-hydroxyxanthine is attacked about twice as fast. 2. The pH optimum for the reaction of 2-hydroxyxanthine is near 5, i.e. the neutral form of this substrate is attacked much faster than the anion. Probably in the "active" form of the latter, the negative charge is located mainly in the imidazole ring, thus inhibiting nucleophilic attack at C-8.  相似文献   

20.
The biosynthesis of the 3-hydroxyvalerate (3HV) monomer of polyhydroxyalkanoate by Rhodococcus ruber from succinic acid was investigated using nuclear magnetic resonance analysis. Polymer produced from [2,3-13C]- and [1,4-13C]succinate showed that the C-1-C-2 and C-4-C-5 fragments of 3HV were derived from carbons 2 and 3 of succinate, essentially without bond cleavage, and carbon 3 of 3HV was derived from a carboxyl carbon of succinate. Using [1,2-13C]succinate it was demonstrated that the C-1-C-2 bond of succinate was cleaved during polymer biosynthesis. Methylmalonyl-coenzyme A (CoA) mutase activity was detected in cell-free extracts of R. ruber by enzyme assay and HPLC analysis of reaction products. A pathway, involving the known methylmalonyl-CoA pathway for propionate formation in Propionibacteria, followed by the established pathway for PHA biosynthesis from propionyl-CoA and acetyl-CoA, is proposed for the biosynthesis of 3HV from succinate by R. ruber. Correspondence to: A. J. Anderson  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号