首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lim EJ  Lee SH  Lee JG  Chin BR  Bae YS  Kim JR  Lee CH  Baek SH 《FEBS letters》2006,580(18):4533-4538
CpG oligodeoxunucleotide (ODN) plays an important role in immune cell function. The present study examined whether temporal control of toll-like receptor (TLR)-9 by CpG ODN can regulate the expression of matrix metalloproteinase-9 (MMP-9). CpG ODN induced the release of tumor necrosis factor (TNF)-alpha and the expression of TNF receptor (TNFR)-II, but not of TNFR-I, in a time-dependent manner and stimulated significant, though delayed, MMP-9 expression. The endosomal acidification inhibitors, chloroquine or bafilomycin A, inhibited CpG ODN-induced TNF-alpha, TNFR-II, and MMP-9 expression. CpG ODN induced the phosphorylation of Akt, and the inhibition of Akt by LY294002 suppressed CpG ODN-induced TNF-alpha, TNFR-II, and MMP-9 expressions. Moreover, neutralizing TNF-alpha antibody significantly suppressed CpG ODN-induced MMP-9 expression, suggesting the involvement of TNF-alpha. These observations suggest that CpG ODN may play important roles in macrophage activation by regulating the expression of MMP-9 via a TLR-9/Akt/TNF-alpha-dependent signaling pathway.  相似文献   

2.
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.  相似文献   

3.
4.
Pu J  Peng G  Li L  Na H  Liu Y  Liu P 《Journal of lipid research》2011,52(7):1319-1327
Chronic exposure to saturated fatty acids can cause insulin resistance. However, the acute effects of fatty acids are not clear and need to be elucidated because plasma fatty acid concentrations fluctuate postprandially. Here, we present the acute effects of palmitate (PA) on skeletal muscle cells and their underlying molecular mechanisms. Immuno-fluorescence results showed that PA rapidly induced GLUT4 translocation and stimulated glucose uptake in rat skeletal muscle cell line L6. Phosphorylation of AMP-activated protein kinase (AMPK), Akt, and extracellular signal-related kinase1/2 (ERK1/2) was enhanced by PA in a time-dependent manner. Cell surface-bound PA was sufficient to stimulate Akt phosphorylation. The inhibitors of PI3 kinase (PI3K), AMPK, Akt, and ERK1/2 could decrease PA-induced glucose uptake, and PI3K inhibitor decreased AMPK, Akt, and ERK1/2 phosphorylation. Weakening AMPK activity reduced phosphorylation of Akt but not ERK1/2, and Akt inhibitor could not affect ERK1/2 activation either. Meanwhile, ERK1/2 inhibitors had no effect on Akt phosphorylation. Taken together, our data suggest that PA-mediated glucose uptake in skeletal muscle cells may be stimulated by the binding of PA to cell surface and followed by PI3K/AMPK/Akt and PI3K/ERK1/2 pathways independently.  相似文献   

5.
6.
Lü CL  Ye H  Tang XB  Zhu DL 《生理学报》2005,57(5):605-611
缺氧诱导的15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)是引起肺动脉收缩的重要介导因子。15-HETE引起肺动脉收缩的信号转导途径尚不清楚。本研究旨在确定细胞外信号调节激酶1/2(extracellular signal-regulated kinase-1/2,ERK1/2)信号转导通路是否参与15-HETE收缩缺氧火鼠肺动脉的过程。采用组织浴槽肺动脉环张力检测、蛋白质免疫印迹Western blot)和免疫细胞化学方法。制备缺氧大鼠动物模型,成年雄性Wistar大鼠在低氧环境下(吸入氧分数为0.12)正常喂养9d。显微分离直径1-1.5mm肺动脉,剪成长为3mm的动脉环,进行血管张力检测。用ERK1/2上游激酶(MEK)抑制剂PD98059抑制ERK1/2活性。结果显示,PD98059可明显抑制15-HETE对缺氧大鼠肺动脉环的收缩作用。在去除内皮的肺动脉环,PD98059仍叮明显降低15-HETE的缩血管作用。Western blot和免疫细胞化学结果都显示,15-HETE能促进ERK1/2磷酸化。由此表明ERK1/2信号转导通路参与15-HETE收缩缺氧大鼠肺动脉的过程。  相似文献   

7.
Ko HM  Kang JH  Choi JH  Park SJ  Bai S  Im SY 《FEBS letters》2005,579(28):6451-6458
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of a variety of angiogenic factors, via the nuclear factor (NF)-kappaB activation. Recently, we reported that PAF upregulates MMP-9 expression in a NF-kappaB-dependent manner. In this study, we investigated the signaling pathway involved in PAF-induced MMP-9 expression in ECV304 cells. Our current data indicate that the Ca(2+)- or phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway is necessary for PAF-induced MMP-9 expression. Furthermore, PAF-induced NF-kappaB activation was blocked by selective inhibitors of Ca(2+), PI3K, or extracellular signal-regulated kinase (ERK). Our results suggest that PAF-induced MMP-9 expression, in a NF-kappaB-dependent manner, is regulated by Ca(2+), PI3K and ERK signaling pathways.  相似文献   

8.
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.  相似文献   

9.
The secretion of matrix metalloproteinase (MMP-9) is stimulated by the glucocorticoid-induced tumor necrosis factor receptor (GITR), a new tumor necrosis factor receptor (TNFR) family, in murine macrophages via an activation of protein kinase C (PKC)delta and phospholipase D (PLD). Secretions of MMP-9 are stimulated by the phosphatidic acid (PA), a product of PLD activity and an inhibition of PA production by a 1-propanol inhibited secretion of MMP-9 by soluble GITR (sGITR). MMP-9 is not secreted by diacylglycerol (DAG) and an inhibitor of PA phosphatase has no effect on the secretion induced by sGITR, indicating that PA is responsible for MMP-9 secretion in murine macrophages. Our data indicates that sGITR-induced activation of PKCdelta and PLD increases MMP-9 secretions in macrophages.  相似文献   

10.
Tissue injury triggers inflammatory responses that may result in release of degradation products or exposure of cryptic domains of extracellular matrix components. Previously, we have shown that a cryptic peptide (AQARSAASKVKVSMKF) in the alpha-chain of laminin-10 (alpha5beta1gamma1), a prominent basement membrane component, is chemotactic for both neutrophils (PMNs) and macrophages (Mphis) and induces matrix metalloproteinase-9 (MMP-9) production. To determine whether AQARSAASKVKVSMKF has additional effects on inflammatory cells, we performed microarray analysis of RNA from RAW264.7 Mphis stimulated with AQARSAASKVKVSMKF. Several cytokines and cytokine receptors were increased >3-fold in response to the laminin alpha5 peptide. Among these were TNF-alpha and one of its receptors, the p75 TNFR (TNFR-II), increasing 3.5- and 5.7-fold, respectively. However, the peptide had no effect on p55 TNFR (TNFR-I) expression. Corroborating the microarray data, the protein levels of TNF-alpha and TNFR-II were increased following stimulation of RAW264.7 cells with AQARSAASKVKVSMKF. In addition, we determined that the production of TNF-alpha and TNFR-II in response to AQARSAASKVKVSMKF preceded the production of MMP-9. Furthermore, using primary Mphis from mice deficient in TNFR-I, TNFR-II, or both TNF-alpha receptors (TNFRs), we determined that AQARSAASKVKVSMKF induces MMP-9 expression by Mphis through a pathway triggered by TNFR-II. However, TNF-alpha signaling is not required for AQARSAASKVKVSMKF-induced PMN release of MMP-9 or PMN emigration. These data suggest that interactions of inflammatory cells with basement membrane components may orchestrate immune responses by inducing expression of cytokines, recruitment of inflammatory cells, and release of proteinases.  相似文献   

11.
Matrix metalloproteinase-1 (MMP-1) is increased in inflammatory conditions leading to destruction of extracellular matrix. Many inflammatory stimuli activate sphingomyelinases (SMases), which generate ceramide. We aimed to define the relevance and type of SMase responsible for the regulation of MMP-1. Acid sphingomyelinase (ASM)-deficient human fibroblasts failed to phosphorylate extracellular signal-regulated kinase (ERK), or upregulate MMP-1 mRNA and protein expression upon stimulation with interleukin-1 beta (IL-1β), whereas phosphorylation of p38 mitogen-activated protein kinase and IL-8 production remained unaffected. Transfection of ASM restored MMP-1 production. Addition of exogenous SMase was sufficient to restore activation of ERK and increase MMP-1 mRNA. Inhibition of ASM with imipramine completely abrogated MMP-1 induction. The results suggest that IL-1β-induced expression of MMP-1 is dependent on ASM.  相似文献   

12.
13.
Zhao T  Hou M  Xia M  Wang Q  Zhu H  Xiao Y  Tang Z  Ma J  Ling W 《Cellular immunology》2005,238(1):19-30
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways.  相似文献   

14.
Melioidosis is caused by the facultative intracellular bacterium, Burkholderia pseudomallei. Using C57BL/6 mice, we investigated the role of macrophages, TNF-alpha, TNF receptor-1 (TNFR1) and TNF receptor-2 (TNFR2) in host defense against B. pseudomallei using an experimental model of melioidosis. This study has demonstrated that in vivo depletion of macrophages renders C57BL/6 mice highly susceptible to intranasal infection with B. pseudomallei, with significant mortality occurring within 5 days of infection. Using knockout mice, we have also shown that TNF-alpha and both TNFR1 and TNFR2 are required for optimal control of B. pseudomallei infection. Compared with control mice, increased bacterial loads were demonstrated in spleen and liver of knockout mice at day 2 postinfection, correlating with increased inflammatory infiltrates comprised predominantly of neutrophils and widespread necrosis. Following infection with B. pseudomallei, mortality rates of 85.7%, 70% and 91.7% were observed for mice deficient in TNF-alpha, TNFR1 and TNFR2, respectively. Comparison of survival, bacterial loads and histology indicate that macrophages, TNF-alpha, TNFR1 or TNFR2 play a role in controlling rapid dissemination of B. pseudomallei.  相似文献   

15.
Matrix metalloproteinase-9 (MMP-9) plays an important role in mediating the invasion and angiogenic process of malignant gliomas. This study was undertaken to determine if an isoflavone metabolite, irisolidone, inhibits MMP-9 expression in human astroglioma cells. Irisolidone was found to inhibit the secretion and protein expression of MMP-9 induced by PMA in U87 MG glioma cells, accompanied by the inhibition of MMP-9 mRNA expression and promoter activity. Further mechanistic studies revealed that irisolidone inhibits the binding of NF-κB and AP-1 to the MMP-9 promoter and suppresses the PMA-induced phosphorylation of ERK and JNK, which are upstream signaling molecules in MMP-9 expression. The Matrigel-invasion assay showed that irisolidone suppresses the in vitro invasiveness of glioma cells. Therefore, the strong inhibition of MMP-9 expression by irisolidone might be a potential therapeutic modality for controlling the growth and invasiveness of gliomas.  相似文献   

16.
17.
18.
Persistently elevated level of TNF-α has been implicated in several inflammatory disorders, however, its autocrine production through TNF-α receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-α expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-α induced NF-κB activation to a higher extent. It was further observed that NF-κB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-α expression. All these results suggest that TNF-α expression is regulated by synergistic signaling of TNF receptors through downstream NF-κB activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号