首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake kinetics of ammonium and phosphate by Gracilaria tikvahiae McLachlan were studied under field conditions. Seaweeds, pulse fed once a week for 6 h over a 4-week period, had maximum uptake rates of 19 μmol·g fwt?1·h?1 for ammonium and 0.28 μmol·g fwt?1·h?1 for phosphate. For both nutrients there was a positive linear correlation between uptake rate (v) and concentration (S) over the entire range of concentration tested. In a nutrient depletion experiment, the phosphate uptake curve determined over a wide range of concentrations consisted of two stages of saturation at low concentrations, and a linear phase at high concentrations. Ash free dry weight, chlorophyll a, phycoerythrin, and protein content were higher in pulse fed plants than in control plants receiving no nutrient additions, while the reverse held true for carbohydrate contents and the C/N ratios. The C/N ratio inversely correlated with ammonium and phosphate uptake rate as well as protein and phycoerythrin content, and positively with carbohydrate content.  相似文献   

2.
  1. A study has been made of the relationships between the synthesesof carbohydrate, protein, and fat by Penicillium lilacinum Thomin presence of different amounts of sodium nitrate us a definedsucrose salts medium.
  2. Under the defined experimental conditionsincreases in the concentrationof NO2 in the medium werefollowed by increases in therates at which nitrogen and sugarwere taken up by the fungus,in the quantities assimilated,and in total and protein nitrogenin the felt. These conditionsprevailed so long as unassimilatedsugar was available.
  3. Mediaof lower NO3 concentration (for example, 0·32or 0·64 per cent. (w/v) NaNO2;) yielded feltsricher in carbohydrate than were those grown in media of higherNO2; content (0·96 or 1·28 per cent. (w/v)NaNO3 The carbohydrate content of the felts increased graduallyuntil the sugar in the medium was exhausted; carbohydrate contentthen decreased.
  4. Media of lower NO3; concentration weremore conduciveto fat synthesis than those of higher NO3;content.
  相似文献   

3.
1. A more detailed study has been made of the influence of thesefactors on fat formation by Aspergillus nidulans, Penicilliumspinulosum, and Penicillium javanicum. 2. The effect of halving the glucose, while keeping the ammoniumnitrate concentration constant, lowered the yield of fat onsugar used in A. nidulans and P. spinulosum but not in P. javanicumcultures. 3. Keeping the same N: C ratio and raising the glucose concentrationfrom ro to 20 per cent. showed that to per cent. glucose wasmore efficiently converted to fat by A. nidulans and P. javanicum. 4. The iodine values of the extracted fats were higher, in general,with increased length of incubation. Low ammonium nitrate concentrations,however, tended to give low iodine values. 5. The results have been applied on a larger scale by growthin Roux bottles, Glaxo flasks, and a flat stainless-steel tank.  相似文献   

4.
在光暗比(14,10)、温(27±1)℃、湿(60%一80%RH)环境模拟箱内,研究了取食低、中、高三种不同施氮量的棉花、小麦、玉米和大豆繁殖器官对棉铃虫Helicoverpaarmigera(Hubner)发育与繁殖的影响,并通过对不同施氮量寄主植物繁殖器官的成分分析,探讨了造成这些影响的原因。结果表明,四种寄主植物的C/N比均随施氮量的增加而降低,并且大豆的C/N比(分别为0.5、0.4和0.3)<棉花(分别为1.1、0.9和0.9)<小麦(分别为4.5、4.O和3.8)<玉米(分别为5.2、4.2和4.2)。取食不同的施氮量寄主植物对棉铃虫发育和存活的影响主要表现在低龄(1~3龄)幼虫期,即随寄主植物C/N比下降,低龄幼虫的发育历期缩短,存活率提高;并且取食C/N较低的寄主植物的发育速度和存活率高于取食C/N较高的寄主植物。随着施氮量的增加,取食不同寄主植物的棉铃虫成虫产卵量均呈上升趋势;取食较低C/N比寄主植物的种群增长指数呈先后升后降趋势,而取食较高C/N比的寄主植物则呈上升趋势。取食C/N比适中的寄主植物更有利于该害虫的繁殖及其种群增长,C/N比太高或太低均不太有利。不同施氮量的寄主植物对棉铃虫发育与繁殖的影响是由于其体内碳水化合物和蛋白质含量的差异及两者间比例的不同所致。  相似文献   

5.
The chemical composition of nutrient-saturated cultures of Emilianiahuxleyi, Amphidinium carterae, and Staurastrum luetkemuelleriwas studied. The variation in chemical composition of naturalphytoplankton communities in the North Sea, the Trondheimsfjord,and a eutrophic lake was also studied. Nutrient status was evaluatedby measurement of the algal protein/carbohydrate, N/C, P/C,and N/P ratios. Tests for P-deficiency were carried out by measuringthe increase in ATP upon addition of phosphate. At saturationthe N/C ratio was {small tilde}0.14 in marine species and {smalltilde}0.05 in Staurastrum. Saturation P/C ratios (excludingpolyphosphates) were species-dependent, ranging from 0.017 (Skeletonema)to 0.006 (Amphidinium). Amphidinium and Staurastrum store polyphosphateswhen grown in P-rich media; true marine planktonic species donot. Natural communities tended to be close to nutrient saturationat low biomass densities and nutrient deficient at high densities.In the North Sea, nitrogen was clearly limiting. In waters offthe Møre coast and in the Trondheimsfjord, growth wasnearly balanced with respect to N and P at high salinities (>25)and clearly P-limited in brackish fjord waters. In dense communities,the N/P ratio was inversely related to salinity. Freshwatercommunities were clearly P-limited, but responses were dampenedwhen daphnia or whitefish were introduced, due to increasedexcretion of nutrients. 1Contribution No. 212, Trondheim Biological Station, N-7001Trondheim, Norway.  相似文献   

6.
We investigate how the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae) responds to dietary protein (P) and carbohydrate (C) contents and the P:C ratio in terms of both immature and adult life‐history traits, as well as effects on larval body composition. Nine chicken‐feed based diets varying in their P:C ratio are formulated. We test three protein concentrations (10%, 17% and 24%) and three carbohydrate concentrations (35%, 45% and 55%) and their combinations. All nine diets support the complete development and reproduction of this species. Survival is high on all diets. Development time, larval yield, larval crude fat and egg yield are more influenced by P and C contents than by the P:C ratio. Low contents result in a shorter development time. Larval yield is higher on diets with higher C‐contents. Pupal development is faster on a low dietary P‐content for all three C‐contents. Egg yield only increases when P‐content increases, although it also varies with the P:C ratio. Larval crude protein content is similar on all nine diets but increases when C‐content is low (10%) in P10 and P17. Larval crude fat content is high at P24‐diets irrespective of C‐content. We conclude that a high macronutrient content combined with a low P:C ratio positively affects H. illucens performance. The diet P17:C55 supports the highest larval and adult performance and results in a high larval body protein content and an intermediate crude fat content.  相似文献   

7.
The objective of this study was to examine the differences in the biochemical and elemental stoichiometry of a freshwater centric diatom, Stephanodiscus minutulus (Grun.), under various nutrient regimes. Stephanodiscus minutulus was grown at μmax or 22% of μmax under limitation by silicon, nitrogen, or phosphorus. Cell sizes for nutrient‐limited cultures were significantly smaller than the non‐limited cell sizes, with N‐limited cells being significantly smaller than all other treatments. Compared with the nutrient‐replete treatment, both carbohydrates and lipids increased in Si‐ and P‐limited cells, whereas carbohydrates increased but proteins decreased in N‐limited cells. All of the growth‐limited cells showed an increase of carbohydrate and triglyceride, and a decrease of cell size and polar lipids as a percentage of total lipids. The non‐limited cells also had a significantly higher chl a concentration and galactolipids as a percentage of total lipids than any of the limited treatments, and the low‐Si and low‐P cells had significantly higher values than the low‐N cells. The particulate C concentrations showed significant differences between treatments, with the Si‐ and P‐limited treatments being significantly higher than the N‐ and non‐limited treatments. Particulate Si did not show a strong relationship with any of the parameters measured, and it was the only parameter with no differences between treatments. The low‐Si cells had a significantly higher P content (about two times more) than any other treatment, presumably owing to the luxury consumption of P, and a correspondingly high phospholipid concentration. The elemental data showed that S. minutulus had a high P demand with low optimum N:P (4) and Si:P (10) ratios and a C:N:P ratio of 109:16:2.3. The particulate C showed a positive relationship with POM (r = 0.93), dry weight (r = 0.88), lipid (r = 0.87) and protein (r = 0.84, all P < 0.0001). Particulate N showed a positive relationship with galactolipids (r = 0.95), protein (r = 0.90), dry weight (r = 0.78), lipid (r = 0.75), and cell volume (r = 0.64, all P < 0.0001). It is evident that nutrient limitation in the freshwater diatom S. minutulus has pronounced effects on its biochemical and elemental stoichiometry.  相似文献   

8.
以产油尖状栅藻(Scenedesmus acuminatus)为实验材料, 在持续300 μmol photons/(m2·s)光照条件下, 选用3种不同初始Na2SO4浓度(2.0S、1.0S对照、0.25S)的改良BG-11培养基, 在Φ3.0 cm×60 cm光生物反应器中进行通气培养, 研究分析硫素营养水平与尖状栅藻产油过程光合生理和生化组成的关系。实验结果表明, 初始硫素浓度对尖状栅藻生长有显著的影响(P<0.05), Na2SO4初始浓度为2.0S实验组的生物量最高, 为7.47 g/L, 显著高于1.0S组(6.43 g/L)和0.25S组(4.17 g/L)(P<0.05), 说明加富硫素营养可促进藻细胞的生长。尖状栅藻细胞的叶绿素a、b以及总类胡萝卜素含量变化均与培养基中初始硫素营养水平呈正相关。在培养初期低硫营养有利于藻细胞快速积累碳水化合物, 0.25S实验组碳水化合物含量最高, 占干重的44.37%, 比1.0S和2.0S组分别高出14.43%和13.78%, 培养后期总碳水化合物和蛋白含量均发生不同程度的降低, 转向大量累积油脂, 0.25S实验组的总脂含量最高, 达55.15% DW, 显著高于1.0S和2.0S组(P<0.05)。藻细胞的光合放氧速率、PSⅡ最大光能转化效率(Fv/Fm)、实际光能转换效率(Yield)以及相对电子传递效率(ETR)均与培养液的初始硫素浓度呈正相关, 在整个培养周期中呈先上升后下降的趋势。77 K低温荧光显示, 尖状栅藻在培养初期2个光系统之间存在光能调配现象。上述结果说明, 尖状栅藻细胞的生长、油脂积累和光合生理状况与硫素营养水平直接相关。  相似文献   

9.
 该试验采用开顶式气室(Open top chambers)装置,在两种大气NH3浓度水平(大气背景浓度值为10 nl&;#8226;L-1和高NH3浓度1 000 nl&;#8226;L-1)和两种 供氮介质水平(高供氮介质和低供氮介质)下,对两种氮效率玉米(Zea mays)基因型(‘氮高效5号’(NE5)和‘氮低效四单19’(SD19))的叶绿素 指标值(SPAD值)、净光合速率(Pn)、气孔导度(Gs )、生物量和根冠比等生物学和生理学指标进行了测定。结果表明,大气NH3浓度升高对两种 氮效率玉米基因型各生理指标有显著影响(p<0.05)。与大气背景NH3浓度相比,当大气NH3浓度为1 000 nl&;#8226;L-1 时,生长在高供氮介质中‘氮 高效5号’的SPAD值、Pn和Gs分别降低7.0%、14.0%和6.5%,而‘氮低效四单19’的对应指标分别降低9.0%、11.0%和6.9%;生长在低供氮介质 中的两种氮效率玉米基因型各生理指标均显著增加(p<0.05):‘氮高效5号’的SPAD值、Pn和Gs分别增加5.7%、7.1%和17%,‘氮低效四单19’ 的对应指标分别增加7.0%、11.0%和22.0%。高供氮介质中NH3浓度升高对氮低效基因型玉米冠层生物 量抑制作用小于对氮高效基因型玉米的抑 制效应,而低供氮介质中NH3浓度升高对氮高效基因型玉米冠部的促进作用显著高于对氮低效基因型玉米的促进作用(p<0.05);两种大气NH3营 养下玉米根冠比的变化与采样时期有关。说明从大气中吸收NH3有利于改善生长在低供氮介质上玉米的氮素营养状况,而且对氮低效基因型玉米 的促进作用比对氮高效基因型玉米更加显著。  相似文献   

10.
Summary Milbemycin production byStreptomyces hygroscopicus RB4569D was examined in media containing different carbohydrates. Total milbemycin titer could be increased by substitution of fructose for glucose and by selection of the appropriate starch type. Total titer could be further enhanced by increasing the concentration of fructose and/or starch in the medium. Rates of carbohydrate utilization were shown to be independent of their initial concentration and increased titers in high carbohydrate media were shown to be due to a prolonged production phase rather than an increased accretion rate. The pattern of individual milbemycin components was governed by the carbon:nitrogen ratio of the medium rather than carbohydrate concentration and there was a critical C:N ratio below which no milbemycin was produced.  相似文献   

11.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

12.
Endogenous respiration of Aspergillus sojae K.S. was studied in terms of biochemical analysis. It was found that the different kind of substrates was utilized for the endogenous respiratoin according to C:N ratio of the agar medium on which the mold was grown. In the mycelial mats grown on the medium of low C:N value, pool amino acids, protein, and nucleic acids were mainly utilized from the beginning while carbohydrate or lipid displayed a minor role. The corresponding amount of ammonia was formed. On the other hand, in the mycelial mats grown on the medium of rather high C:N value, carbohydrate or lipid was the major substrate of endogenous respiration in the early stages of incubation. The utilization of the nitrogenous materials and the accompanying formation of ammonia got to start only after the lapse of several hours of incubation.  相似文献   

13.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

14.
In the present study, we have investigated the effects of NaCl concentrations on the growth and phosphate metabolism of an Anabaena doliolum strain isolated from a paddy field, in order to determine the possible effects of salinization. Growth rate, chlorophyll content, and protein content decreased with increasing salt concentration in the growth medium, while carbohydrate concentration increased. Phosphate content and phosphate uptake rate decreased. There was an increase in total alkaline phosphatase activity, with an approximately 7-fold increase in extracellular activity compensating for an approximately 3-fold decrease in cell-bound activity. NaCl effects on protein and chlorophyll concentrations were greater in P-deficient medium, while presence or absence of P in the medium had little effect on cellular carbohydrate concentrations. It is concluded that growth in high salt likely leads to reduced phosphate uptake in A. doliolum.  相似文献   

15.
The carbon (C), nitrogen (N) and phosphorus (P) contents (%of dry weight) of some crustacean zooplankton were studied inthe Baltic Sea. The copepod Acartia sp. had a stable C and Ncontent (48.3 ± 0.8% C, 12.4 ± 0.2% N, C:N ratio4.5 ± 0.1). The P content was variable (1–2%),probably depending on developmental stage and season. Copepodsaccumulating fat, like Pseudocalanus minutus elongatus, hadhigher and more variable C content (50–60%), and lowerN and P content (7–12% N, 0.6–1.5% P). The highestC and lowest N and P contents were found in adult Limnocalanusmacrurus. However, the N:P ratio was apparently independentof fat content and between 14 and 27 for all copepods. The cladoceransBosmina longispina maritima and Evadne nordmanni had lower Ncontent (9.3–10.8%) and higher C:N ratio (5.1–5.7)than Acartia sp. The P content (1.2–1.4%) was similarto Acartia sp. and the N:P ratios (16–19) were in thelower range of that found for the copepods. The N:P ratio wasgenerally somewhat higher in the copepods than in seston, whichmost of the year had nearly Redfield C:N:P ratios. Potentially,nutrient recycling from crustacean zooplankton could enhanceN limitation of phytoplankton, but small stoichiometric differencessuggest that this effect is probably weak. The extent is dependenton the structure of the zooplankton community and the grossgrowth efficiencies. Acartia copepodites, which had nearly RedfieldN:P ratios, would have the opposite effect and enhance P limitationin late summer when seston N:P ratios increased.  相似文献   

16.
The chemical composition of mitochondria obtained from exponentially growing Neurospora can be varied by addition of choline or amino acids to the culture medium. The variation affects the phospholipid to protein ratio, and the density of mitochondria as determined by isopycnic centrifugation in sucrose gradients. These variations have been observed in biochemical mutant strains as well as wild type cultures. In a choline-requiring strain, two levels of choline supplementation to the medium have been defined: a low choline concentration just adequate to support maximal logarithmic growth, and a high choline concentration which permits maximal incorporation of radioactive choline into cellular lipids. Mitochondria isolated from cultures growing at the low choline concentration have one-half the phospholipid to protein ratio of those from high choline cultures, and their density is significantly higher. Artificial mixtures of the two types of mitochondria can be resolved into two populations by isopycnic centrifugation. The concentration of cytochromes (measured by mitochondrial difference spectra) and of malate and succinate dehydrogenases (measured by enzyme activity) were the same in both types of mitochondria, on a protein basis. The results suggest that during growth of the mitochondrial mass, the incorporation of phospholipid and protein components can vary independently. Direct kinetic measurements did indeed show that choline, added to a culture growing at low choline concentration, was incorporated into mitochondrial lipids at a rate faster than the incorporation of protein. The mitochondrial phospholipid to protein ratio can also be influenced by the level of leucine supplementation to a leucine-requiring mutant, so that with leucine concentrations above those required for maximal exponential growth, mitochondria of increasing density and decreasing phospholipid to protein ratio are produced. Additions of choline or amino acids to the minimal medium of wild type cultures influence mitochondrial composition in a manner directly comparable to that observed in biochemical mutant strains. The results suggest that mitochondrial composition, in general, is determined by rates of incorporation of the two major components, phospholipid and protein; that these rates can vary independently in response to precursor concentration in the culture medium; and that they normally operate at a precursor (substrate) concentration below saturation level.  相似文献   

17.
镇海水库拟柱孢藻的分离鉴定和氮磷对其生长的影响   总被引:2,自引:0,他引:2  
以分离自广东省镇海水库的拟柱孢藻N8为对象, 探究其在不同磷浓度及氮磷浓度组合下的生长情况。结果表明, 拟柱孢藻N8对磷的适应范围很宽, 在0.025.12 mg/L磷浓度下均能生长, 最适生长磷浓度范围为0.165.12 mg/L, 磷浓度的升高能显著延长拟柱孢藻的对数生长期和提高生物量。动力学分析表明, 拟柱孢藻N8有较低的KSP值, 对磷元素的亲和性较高, 在磷营养贫乏的环境下更容易形成优势。在氮磷组合实验中, 低氮(0.5 mg/L)显著抑制拟柱孢藻的生长, 且这种生长抑制不受磷浓度的影响; 而在低磷(0.04 mg/L)条件下, 水体中氮浓度的增加会显著促进拟柱孢藻的生长, 拟柱孢藻在高氮中磷和高氮高磷下的生长显著优于其他氮磷组合条件。研究表明, 广东省水库拟柱孢藻的生长受磷的限制较弱, 氮是其生长的决定因子。    相似文献   

18.
The population homogeneity of the stationary-phase monocultures of Pseudomonas aeruginosa dissociants was studied as a function of the initial content of major nutrient elements (C, N, and P) in the cultivation medium. The monocultures of the dissociants remained homogeneous during cultivation if the initial concentrations of the major nutrient elements were either sufficiently high or, conversely, very low, but became heterogeneous during cultivation in unbalanced (with respect to the major nutrient elements) media. At the initial concentration of nitrate in the medium equal to 0.07% or phosphate equal to 0.004-0.014%, the initially homogeneous population of R dissociant cultivated to the stationary growth phase turned out to contain 30-40% of S-type cells, whereas the initially homogeneous population of S dissociant was found to contain 50-80% of M-type cells. The population of M dissociant remained homogeneous throughout the cultivation period. R dissociant grew better at sufficiently high concentrations of glucose, nitrate, and phosphate in the medium, whereas M dissociant grew better when the initial concentrations of these nutrients were low. During the cultivation of R dissociant, the pH of the medium changed insignificantly, and the C/P ratio (the ratio of the carbon and phosphorus consumed during growth) was minimal (among the three dissociants), indicating that the R dissociant accomplishes the oxidative pathway of glucose metabolism. During the cultivation of the M dissociant, the pH of the medium dropped to 3.4-3.9, and the C/P ratio was maximal, indicating that this dissociant accomplishes the fermentative pathway of glucose metabolism. During the cultivation of the S dissociant, the pH of the medium and the C/P ratio exhibited variations, indicating that this dissociant triggers its pathways of glucose metabolism.  相似文献   

19.
The paralytic shellfish poison prducing dinoflagellate Gymnodiniuncatemrum was subjected to changes in salinity, phosphate, ammoniumand nitrate using continuous culture and batch culture methods.In contrast with other algae, this species showed very slowchanges in the concentration of intracellular amino acids, inthe Gln:Glu ratio, and, in contrast with Alrsandnum spp., onlyslow changes in toxin content, during such events as N-feedingof Ndeprived cells or during nutrient deprivation. This organismwas found to be very susceptible to disturbance; maximum growthrates around 0.25–0.3 day–1 with a minimum C:N massratio of 5.5, were attained when cultures were only disturbedby sampling once a day. P-deprived cells were larger (twicethe usual C content of 4 ng C cell–1 and volume of 20pl). The content of free amino acids was always low (5% of cell-N),with low contributions made by arginine (the precursor for paralyticshellfish toxins). Cells growing using ammonium had the lowestC:N ratios and the highest proportion of intracellular aminoacids as arginine. The toxin profile (equal mole ratios of dcSTX,GTX5, dcGT2/3 C1 and C2, and half those values for C3 and C4)was stable and the toxin concentration varied between 0.2 and1 mM STX equivalents (highest when ammonium was not limiting,lowest in P-deprived cells, though as the latter were largertoxin per cell was not so variable). Decreased salinity didnot result in increases in toxin content. Significant amountsof amino acids (mainly serine and glycine, with a total oftenexceeding 4 µM) accumulated in the growth medium duringbatch growth even though the cultures were not bacteria free. 4Present address: Instituto Español de Oceanografia,Apdo 1552, 36280, Vigo, Spain  相似文献   

20.
The diatom Achnanthes brevipes C.A. Ag. was cultured in the presence of limiting concentrations of nitrogen (N) or inorganic phosphate (Pi). Growth, in terms of final yield, was more affected by N limitation than Pi limitation; N limitation had a greater effect also on protein and chlorophyll content. Carbohydrate concentrations increased under both nutrient starvation treatments, but N or Pi limitation had different effects. Total (intracellular plus extracellular) sugar content increased when cells were exposed to both types of nutrient limitation, but the extracellular polysaccharide fraction increased only in the presence of Pi starvation. Analyses were performed to identify the metabolic changes occurring in cells exposed to low phosphate because this was the main condition that affected carbohydrate extrusion. Activities of several enzymes involved in carbohydrate metabolism showed that under Pi limitation there was no activation of alternative reactions that were found to result in Pi liberation, instead of its consumption, in some higher plants and in the green alga Selenastrum minutum Naeg. Collins. Results showed that activities of pyruvate kinase, phosphorylating NAD-dependent 3-phosphate-glyceraldehyde dehydrogenase, and 3-phospho-glycerate kinase were inhibited under Pi-limited conditions compared with control cells, indicating limited glucose catabolism. Activity of uridine diphosphate glucose pyrophosphorylase, a key enzyme for the biosynthesis of the storage compound crysolaminarin, was also partly inhibited in Pi-stressed cells. Our findings suggest that carbohydrate catabolism in A. brevipes is limited under Pi deficiency, whereas extracellular extrusion of carbohydrate is favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号