首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repair of mismatched DNA occurs mainly by the long-patch mismatch repair (MMR) pathway, requiring Msh2 and Pms1. In Schizosaccharomyces pombe mismatches can be repaired by a short-patch repair system, containing nucleotide excision repair (NER) factors. We studied mismatch correction efficiency in cells with inactivated DNA repair nucleases Rad13, Rad2 or Uve1 in MMR proficient and deficient background. Rad13 incises 3' of damaged DNA during NER. Rad2 has a function in the Uve1-dependent repair of DNA damages and in replication. Loss of Rad13 caused a strong reduction of short-patch processing of mismatches formed during meiotic recombination. Mitotic mutation rates were increased, but not to the same extent as in the NER mutant swi10, which is defective in 5' incision. The difference might be caused by an additional role of Rad13 in base excision repair or due to partial redundancy with other 3' endonucleases. Meiotic mismatch repair was not or only slightly affected in rad2 and uve1 mutants. In addition, inactivation of uve1 caused only weak effects on mutation avoidance. Mutation rates were elevated when rad2 was mutated, but not further increased in swi10 rad2 and rad13 rad2 double mutants, indicating an epistatic relationship. However, the mutation spectra of rad2 were different from that of swi10 and rad13. Thus, the function of Rad2 in mutation avoidance is rather independent of NER. rad13, swi10 and rad2, but not uve1 mutants were sensitive to the DNA-damaging agent methyl methane sulphonate. Cell survival was further reduced in the double mutants swi10 rad2, rad13 rad2 and, surprisingly, swi10 rad13. These data confirm that NER and Rad2 act in distinct damage repair pathways and further indicate that the function of Rad13 in repair of alkylated bases is partially independent of NER.  相似文献   

2.
3.
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5′-3′ DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G2 arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Δ cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.  相似文献   

4.
The fission yeast Hsk1p kinase is an essential activator of DNA replication. Here we report the isolation and characterization of a novel mutant allele of the gene. Consistent with its role in the initiation of DNA synthesis, hsk1(ts) genetically interacts with several S-phase mutants. At the restrictive temperature, hsk1(ts) cells suffer abnormal S phase and loss of nuclear integrity and are sensitive to both DNA-damaging agents and replication arrest. Interestingly, hsk1(ts) mutants released to the restrictive temperature after early S-phase arrest in hydroxyurea (HU) are able to complete bulk DNA synthesis but they nevertheless undergo an abnormal mitosis. These findings indicate a second role for hsk1 subsequent to HU arrest. Consistent with a later S-phase role, hsk1(ts) is synthetically lethal with Deltarqh1 (RecQ helicase) or rad21ts (cohesin) mutants and suppressed by Deltacds1 (RAD53 kinase) mutants. We demonstrate that Hsk1p undergoes Cds1p-dependent phosphorylation in response to HU and that it is a direct substrate of purified Cds1p kinase in vitro. These results indicate that the Hsk1p kinase is a potential target of Cds1p regulation and that its activity is required after replication initiation for normal mitosis.  相似文献   

5.
BACKGROUND INFORMATION: In animal cells, cytokinesis occurs by constriction of an actomyosin ring. In fission yeast, ring constriction is followed by deposition of a multilayered division septum that must be cleaved to release the two daughter cells. Although many studies have focused on the actomyosin ring and septum assembly, little is known about the later steps involving the cleavage of the cell wall. RESULTS: We identified a novel gene in Schizosaccharomyces pombe, namely the agn1(+) gene that has homology to fungal 1,3-alpha-glucanases (mutanases). Disruption of the agn1(+) gene is not lethal to the cells, but does interfere with their separation, whereas overexpression of Agn1p is toxic and causes cell lysis. Agn1p levels reach a peak during septation and the protein localizes to the septum region before cell separation. Moreover, agn1(+) is responsible for the 1,3-alpha-glucanase activity, which shows a maximum at the end of septation. CONCLUSIONS: Our results clearly suggest the existence of a relationship between agn1(+), 1,3-alpha-glucanase activity and the completion of septation in S. pombe. Agn1p could be involved in the cleavage of the cylinder of the old wall that surrounds the primary septum, a region rich in alpha-glucans.  相似文献   

6.
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.  相似文献   

7.
Cavero S  Chahwan C  Russell P 《Genetics》2007,175(2):963-967
The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.  相似文献   

8.
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.  相似文献   

9.
The first step of homology-dependent DNA double-strand break (DSB) repair is the 5′ strand-specific processing of DNA ends to generate 3′ single-strand tails. Despite extensive effort, the nuclease(s) that is directly responsible for the resection of 5′ strands in eukaryotic cells remains elusive. Using nucleoplasmic extracts (NPE) derived from the eggs of Xenopus laevis as the model system, we have found that DNA processing consists of at least two steps: an ATP-dependent unwinding of ends and an ATP-independent 5′3′ degradation of single-strand tails. The unwinding step is catalyzed by DNA helicases, the major one of which is the Xenopus Werner syndrome protein (xWRN), a member of the RecQ helicase family. In this study, we report the purification and identification of the Xenopus DNA2 (xDNA2) as one of the nucleases responsible for the 5′3′ degradation of single-strand tails. Immunodepletion of xDNA2 resulted in a significant reduction in end processing and homology-dependent DSB repair. These results provide strong evidence that xDNA2 is a major nuclease for the resection of DNA ends for homology-dependent DSB repair in eukaryotes.  相似文献   

10.
J Liu  H Wang  D McCollum  M K Balasubramanian 《Genetics》1999,153(3):1193-1203
Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin-based contractile ring. A division septum is formed centripetally, concomitant with ring constriction. Although several genes essential for cytokinesis have been described previously, enzymes that participate in the assembly of the division septum have not been identified. Here we describe a temperature-sensitive mutation, drc1-191, that prevents division septum assembly and causes mutant cells to arrest with a stable actomyosin ring. Unlike the previously characterized cytokinesis mutants, which undergo multiple mitotic cycles, drc1-191 is the first cytokinesis mutant that arrests with two interphase nuclei. Interestingly, unlike drc1-191, drc1-null mutants proceed through multiple mitotic cycles, leading to the formation of large cells with many nuclei. drc1 is allelic to cps1, which encodes a 1,3-beta-glucan synthase subunit. We conclude that Drc1p/Cps1p is not required for cell elongation and cell growth, but plays an essential role in assembly of the division septum. Furthermore, it appears that constriction of the actomyosin ring might depend on assembly of the division septum. We discuss possible mechanisms that account for the differences in the phenotypes of the drc1-191 and the drc1-null mutants and also reflect the potential links between Drc1p and other cytokinesis regulators.  相似文献   

11.
The DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated opposite DNA strands containing guanine or 7,8-dihydro-8-oxoguanine by base excision repair thereby preventing G:C to T:A mutations. MYH has been shown to interact with the proliferating cell nuclear antigen (PCNA) in both human and fission yeast Schizosaccharomyces pombe systems. Here we show that S. pombe (Sp) MYH physically interacts with all subunits of the PCNA-like checkpoint protein heterotrimer, SpRad9/SpRad1/SpHus1, in yeast extracts and when the individual subunits are expressed in bacteria. The SpHus1 and SpPCNA binding sites are located in discrete regions of SpMYH. Immunoprecipitation assays reveal that the interaction between SpHus1 and SpMYH increases dramatically after hydrogen peroxide treatment, and this increase in the SpHus1-SpMYH interaction correlates with the presence of SpHus1 phosphorylation. In contrast, the interaction between SpPCNA and SpMYH after hydrogen peroxide treatment remains nearly unchanged. SpMYH associates with SpHus1 in a complex of approximately 450 kDa, the reported native molecular mass of the SpRad9/SpRad1/SpHus1-MYC complex. A larger portion of SpMYH shifts to the 150-500-kDa regions after hydrogen peroxide treatment in comparison with untreated extracts. SpHus1 phosphorylation is substantially reduced in SpMYH Delta cells after hydrogen peroxide treatment. These data suggest that MYH may act as an adaptor to recruit checkpoint proteins to the DNA lesions.  相似文献   

12.
Liu J  Tang X  Wang H  Balasubramanian M 《FEBS letters》2000,478(1-2):105-108
Previously we have reported that Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. In this report, we present evidence that S. pombe Bgs2p, a 1,3-beta-glucan synthase that shows 56% identity to Drc1p/Cps1p, is essential for maturation of ascospore wall in S. pombe, but is not required for vegetative growth. Diploid cells homozygous for the bgs2-null mutation, as well as homothallic bgs2-null mutant haploids undergo meiosis normally. However, a 1, 3-beta-glucan containing spore wall is not assembled in these cells. The spores resulting from meiosis of a bgs2-null mutant lyse upon release from the ascus and are therefore inviable. Using a green fluorescent protein-tagged Bgs2p, we demonstrate that Bgs2p is localized at the periphery of the ascospores during meiosis and sporulation. However, Bgs2p is not detected in vegetative cells. We conclude that Bgs2p is required for 1,3-beta-glucan synthesis during ascospore wall maturation.  相似文献   

13.
《Gene》1996,170(1):153-154
The Qm family of proteins, which are found in a wide variety of species such as budding yeast, plants and humans, are believed to play a role in gene expression. Here, we report the isolation of a gene, spqM, from the fission yeast Schizosaccharomyces pombe whose deduced amino-acid sequence shared 71.6 to 61.36% identity with members of the Qm family. The high degree of conservation of the Qm members suggest that they were selectively conserved, because of an important biological role  相似文献   

14.
Octobre G  Lorenz A  Loidl J  Kohli J 《Genetics》2008,178(4):2399-2412
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.  相似文献   

15.
16.
We have defined five sev genes by genetic analysis of Schizosaccharomyces pombe mutants, which are defective in both proliferation and sporulation. sev1(+)/cdt2(+) was transcribed during the G1-S phase of the mitotic cell cycle, as well as during the premeiotic S phase. The mitotic expression of cdt2(+) was regulated by the MCB-DSC1 system. A mutant of a component of DSC1 affected cdt2(+) expression in vivo, and a cdt2(+) promoter fragment containing MCB motifs bound DSC1 in vitro. Cdt2 protein also accumulated in S phase and localized to the nucleus. cdt2 null mutants grew slowly at 30 degrees and were unable to grow at 19 degrees. These cdt2 mutants were also medially sensitive to hydroxyurea, camptothecin, and 4-nitroquinoline-1-oxide and were synthetically lethal in combination with DNA replication checkpoint mutations. Flow cytometry analysis and pulsed-field gel electrophoresis revealed that S-phase progression was severely retarded in cdt2 mutants, especially at low temperatures. Under sporulation conditions, premeiotic DNA replication was impaired with meiosis I blocked. Furthermore, overexpression of suc22(+), a ribonucleotide reductase gene, fully complemented the sporulation defect of cdt2 mutants and alleviated their growth defect at 19 degrees. These observations suggest that cdt2(+) plays an important role in DNA replication in both the mitotic and the meiotic life cycles of fission yeast.  相似文献   

17.
The p21-activated kinase, Shk1, is required for the proper establishment of cell polarity in the fission yeast, Schizosaccharomyces pombe. We showed recently that loss of the essential Shk1 inhibitor, Skb15, causes significant spindle defects in fission yeast, thus implicating Shk1 as a potential regulator of microtubule dynamics. Here, we show that cells deficient in Shk1 function have malformed interphase microtubules and mitotic microtubule spindles, are hypersensitive to the microtubule-destabilizing drug thiabendazole (TBZ) and cold sensitive for growth. TBZ treatment causes a downregulation of Shk1 kinase activity, which increases rapidly after release of cells from the drug, thus providing a correlation between Shk1 kinase function and active microtubule polymerization. Consistent with a role for Shk1 as a regulator of microtubule dynamics, green fluorescent protein (GFP)-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles, as well as to cell ends and septum-forming regions of fission yeast cells. We show that loss of Tea1, a cell end- and microtubule-localized protein previously implicated as a regulator of microtubule dynamics in fission yeast, exacerbates the growth and microtubule defects resulting from partial loss of Shk1 and that Shk1 localizes to illicit growth tips produced by tea1 mutant cells. Our results demonstrate that Shk1 is required for the proper regulation of microtubule dynamics in fission yeast and implicate Tea1 as a potential Shk1 regulator.  相似文献   

18.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

19.
20.
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号