首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC(50) values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC(50) value of 0.84 microM, while this compound showed an IC(50) value of 0.49 microM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC(50) values of 4.1 microM and 2.6 microM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 microM and 0.25 microM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.  相似文献   

2.
The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 μM, while this compound showed an IC(50) value of 0.81 μM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 μM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 μM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 μM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.  相似文献   

3.
Chagas disease, caused by Trypanosoma cruzi, is a widespread infection in Latin America. Currently, only 2 partially effective and highly toxic drugs, i.e., benznidazole and nifurtimox, are available for the treatment of this disease, and several efforts are underway in the search for better chemotherapeutic agents. Here, we have determined the trypanocidal activity of 2,3-diphenyl-1 ,4-naphthoquinone (DPNQ), a novel quinone derivative. In vitro, DPNQ was highly cytotoxic at a low, micromolar concentration (LD50 = 2.5 microM) against epimastigote, cell-derived trypomastigote, and intracellular amastigote forms of T. cruzi, but not against mammalian cells (LD50 = 130 microM). In vivo studies on the murine model of Chagas disease revealed that DPNQ-treated animals (3 doses of 10 mg/kg/day) showed a significant delay in parasitemia peak and higher (up to 60%) survival rate 70 days post-infection, when compared with the control group (infected, untreated). We also observed a 2-fold decrease in parasitemia between the control group (infected, untreated) and the treated group (infected, treated). No apparent drug toxicity effects were noticed in the control group (uninfected, treated). In addition, we determined that DPNQ is the first competitive inhibitor of T. cruzi lipoamide dehydrogenase (TcLipDH) thus far described. Our results indicate that DPNQ is a promising chemotherapeutic agent against T. cruzi.  相似文献   

4.
As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 2133), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 4749 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 5456, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.  相似文献   

5.
To facilitate studies of vaccines and antimicrobial agents effective against Toxoplasma gondii infection, an assay system was developed to semi-quantitate parasitaemia using PCR amplification of T. gondii DNA obtained from the blood of mice infected with the parasite. A competitive internal standard DNA fragment of the B1 gene of T. gondii was generated and used in PCR so that the amplified product could be semi-quantitated and false negative results could be avoided. The PCR assay system was used to analyse the levels of parasitaemia in immunised and antimicrobial agent treated mice at various times after infection with T. gondii. The results of these studies indicate that this highly sensitive detection method is a rapid and reliable procedure that can be employed to assess the abilities of vaccines or antimicrobial agents to provide protection early following T. gondii infection.  相似文献   

6.
We compared in vitro and in vivo induction of IL-12 (p40) and IFN-gamma by mouse cells stimulated with Toxoplasma gondii, Trypanosoma cruzi, and different species of Leishmania. Spleen cells cultured in vitro with T. cruzi or T. gondii, but not with Leishmania, produced IL-12 (p40) and IFN-gamma. Accordingly, IL-12 (p40) was produced by macrophages stimulated in vitro with live T. cruzi or T. gondii or membrane glycoconjugates obtained from trypomastigotes or tachyzoites. No IL-12 production was detected when macrophages were stimulated with live parasites or glycoconjugates from Leishmania, regardless of priming with IFN-gamma. In vivo, only T. cruzi and T. gondii induced the synthesis of IL-12 and IFN-gamma by mouse spleen cells after intraperitoneal injection of parasites. When injected subcutaneously, live Leishmania sp. induced IL-12 (p40) and IFN-gamma production by draining lymph node cells, albeit the levels were slightly lower than those induced by infection with T. gondii or T. cruzi using the same route. Together our results indicate that under different conditions, the intracellular protozoa T. gondii and T. cruzi are more potent stimulators of IL-12 and IFN-gamma synthesis by host immune cells than parasites of the genus Leishmania.  相似文献   

7.
The drugs presently in use against Chagas disease are very toxic, inducing a great number of side effects. Alternative treatments are necessary, not only for Chagas disease but also for other diseases caused by protozoan parasites where current drugs pose toxicity problems. The plant microtubule inhibitor trifluralin has previously been tested with success against Leishmania, Trypanosoma brucei and several other protozoan parasites. Trypanosoma cruzi, the causative agent of Chagas disease, is also sensitive to the drug. This sensitivity has been correlated with the deduced amino acid sequences of alpha- and beta-tubulin of T. cruzi as compared with plant, mammal and other parasite sequences.  相似文献   

8.
Characterization of a new gene WX2 in Toxoplasma gondii   总被引:3,自引:0,他引:3  
Using hybridization techniques, we prepared the monoclonal antibody (Mab) 7C3-C3 against Toxoplasma gondii. The protection tests showed that the protein (Mab7C3-C3) inhibited the invasion and proliferation of T. gondii RH strain in HeLa cells. The passive transfer test indicated that the antibody significantly prolonged the survival time of the challenged mice. It was also shown that the antibody could be used for the detection of the circulating antigen of T. gondii. After immunoscreening the T. gondii tachyzoite cDNA library with Mab7C3-C3, a new gene wx2 of T. gondii was obtained. Immunofluorescence analysis showed that the WX2 protein was located on the membrane of the parasite. Nucleotide sequence comparison showed 28% identity to the calcium channel α-IE unit and shared with the surface antigen related sequence in some conservative residues. However, no match was found in protein databases. Therefore, it was an unknown gene in T. gondii encoding a functional protein on the membrane of T. gondii. Because it has been shown to have a partial protective effect against T. gondii infection and is released as a circulating antigen, it could be a candidate molecule for vaccine or a novel target for new drugs.  相似文献   

9.
We have investigated the effect of a series of 1-amino-1,1-bisphosphonates derived from fatty acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the causative agent of American trypanosomiasis (Chagas' disease). Some of these drugs were potent inhibitors against the intracellular form of the parasite, exhibiting IC50 values at low micromolar level. Cellular activity was associated with the inhibition of enzymatic activity of T. cruzi farnesyl pyrophosphate synthase. As bisphosphonate-containing drugs are FDA-approved for the treatment of bone resorption disorders, their potential innocuousness makes them good candidates to control tropical diseases.  相似文献   

10.
Leishmaniasis and Chagas' are parasitic protozoan diseases that affect the poorest population in the world, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, novel, safe and more efficacious drugs are essential. In this work, the CH(2)Cl(2) phase from MeOH extract from the leaves of Baccharis retusa DC. (Asteraceae) was fractioned to afford two flavonoids: naringenin (1) and sakuranetin (2). These compounds were in vitro tested against Leishmania spp. promastigotes and amastigotes and Trypanosoma cruzi trypomastigotes and amastigotes. Compound 2 presented activity against Leishmania (L.) amazonensis, Leishmania (V.) braziliensis, Leishmania (L.) major, and Leishmania (L.) chagasi with IC(50) values in the range between 43 and 52 μg/mL and against T. cruzi trypomastigotes (IC(50)=20.17 μg/mL). Despite of the chemical similarity, compound 1 did not show antiparasitic activity. Additionally, compound 2 was subjected to a methylation procedure to give sakuranetin-4'-methyl ether (3), which resulted in an inactive compound against both Leishmania spp. and T. cruzi. The obtained results indicated that the presence of one hydroxyl group at C-4' associated to one methoxyl group at C-7 is important to the antiparasitic activity. Further drug design studies aiming derivatives could be a promising tool for the development of new therapeutic agents for Leishmaniasis and Chagas' disease.  相似文献   

11.
Trypanosoma cruzi, a protozoan parasite, is the causative agent of Chagas disease, a major cause of cardiovascular disease in many Latin American countries. There is an urgent need to develop an improved therapy due to the toxicity of existing drugs and emerging drug resistance. Cruzain, the primary cysteine protease of T. cruzi, is essential for the survival of the parasite in host cells and therefore is an important target for the development of inhibitors as potential therapeutics. A novel series of alpha-ketoamide-, alpha-ketoacid-, alpha-ketoester-, and aldehyde-based inhibitors of cruzain has been developed. The inhibitors were identified by screening protease targeted small molecule libraries and systematically optimizing the P1, P2, P3, and P1' residues using specific structure-guided methods. A total of 20 compounds displayed picomolar potency in in vitro assays and three inhibitors representing different alpha-keto-based inhibitor scaffolds demonstrated anti-trypanosomal activity in cell culture. A 2.3A crystallographic structure of cruzain bound with one of the alpha-ketoester analogs is also reported. The structure and kinetic assay data illustrate the covalent binding, reversible inhibition mechanism of the inhibitor. Information on the compounds reported here will be useful in the development of new lead compounds as potential therapeutic agents for the treatment of Chagas disease and as biological probes to study the role that cruzain plays in the pathology. This study also demonstrates the validity of structure-guided approaches to focused library design and lead compound optimization.  相似文献   

12.
IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.  相似文献   

13.
Infection with Trypanosoma cruzi, the agent of Chagas' disease, results in elevated levels of interleukin-6 (IL-6) in serum and infected tissues. However, it remains unknown whether IL-6 plays a role in host defence against T. cruzi. To determine whether IL-6 underlies disease progression, we followed the time course of T. cruzi-infected mice bearing IL-6 +/+ and minus sign/minus sign genotypes, respectively. We found that IL-6 minus sign/minus sign mice were more susceptible to T. cruzi infection as they exhibited about 3-fold higher parasitaemia and died earlier than wild-type animals. Unlike what might be expected, T. cruzi-infected IL-6 minus sign/minus sign mice did not show at peak infection a decrease in the secretion of IFN-gamma, a Th1 cytokine crucial for controlling the parasite. Instead, they exhibited a much reduced splenocyte recall response to T. cruzi antigens. Our results suggest that IL-6 mediates anti-parasite protective responses against T. cruzi.  相似文献   

14.
Chagas disease (South American trypanosomiasis) is a chronic but often fatal disease endemic throughout much of Latin America. Serological surveys suggest around 24 million people seropositive for the causative agent, Trypanosoma cruzi (Fig. 1), with over 65 million living in the endemic areas and at risk to infection. In Brazil, over 25 million people are considered at risk, and control of the disease constitutes one of Brazil's public health priorities. Treatment or vaccination against T. cruzi is impossible at the public health level because suitable drugs or vaccines are not available. But it is well recognized that transmission can be interrupted by eliminating the domestic vectors - blood-sucking reduviid bugs of the subfamily Triatominae. In Brazil, eradication of Triatoma infestans - the major domestic vector of T. cruzi - is now seen as a feasible target by the Ministry of Health. However, although other domestic vectors can also be controlled, they will retain their sylvatic ecotopes from which they can reinvade houses. In this article, Joao Carlos Pinto Dias explains the current Brazilian policy, high-lighting the successful elimination of T. infestans from much of the southern part of the country.  相似文献   

15.
Activated macrophages produce nitric oxide (NO) and as such are able to control the multiplication of Toxoplasma gondii. Until now, no reports have described a possible modulation of NO production of macrophages after T. gondii infection. To investigate this possibility, murine blood monocyte-derived and peritoneal macrophages were activated in vitro with interferon-gamma and lipopolysaccharide and infected with T. gondii and Trypanosoma cruzi, and NO production was evaluated. NO was produced by monocyte-derived macrophages only if cultured in the presence of macrophage-colony-stimulating factor. Monocyte-derived or peritoneal macrophages infected with T. gondii presented a significant reduction in NO production. NO production inhibition was not detected after T. cruzi infection. Macrophages infected with higher T. gondii/macrophage ratios presented lower NO production. Furthermore, only viable T. gondii could cause partial inhibition of NO production. In macrophages activated 24 h before the interaction, partial inhibition was detected after 3 h of infection and continued for 48 h. In macrophages activated immediately after the interaction, partial inhibition was not detected at 12 h, but was observed at 24 h. T. gondii-infected macrophages present lower inducible nitric oxide synthase expression as assayed by immunofluorescence. T. gondii did not develop in monocyte-derived macrophages producing NO, but were not totally eliminated. These results demonstrate that T. gondii infection partially inhibits NO production by murine macrophages, suggesting that a deactivating macrophage mechanism may be used for better survival into phagocytic cells.  相似文献   

16.
A method is described which permits to determine in vivo and in a short period of time (4-6 hours) the sensitivity of T. cruzi strains to known active chemotherapeutic agents. By using resistant- and sensitive T. cruzi strains a fairly good correlation was observed between the results obtained with this rapid method (which detects activity against the circulating blood forms) and those obtained with long-term schedules which involve drug administration for at least 20 consecutive days and a prolonged period of assessment. This method may be used to characterize susceptibility to active drugs used clinically, provide information on the specific action against circulating trypomastigotes and screen active compounds.  相似文献   

17.
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.  相似文献   

18.
As a continuation of our project aimed at searching for new chemotherapeutic agents against American trypanosomiasis (Chagas disease), new selenocyanate derivatives were designed, synthesized and biologically evaluated against the clinically more relevant dividing form of Trypanosoma cruzi, the etiologic agent of this illness. In addition, in order to establish the role of each part of the selenocyanate moiety, different derivatives, in which the selenium atom or the cyano group were absent, were conceived, synthesized and biologically evaluated. In addition, in order to study the optimal position of the terminal phenoxy group, new regioisomers of WC-9 were synthesized and evaluated against T. cruzi. Finally, the resolution of a racemic mixture of a very potent conformationally rigid analogue of WC-9 was accomplished and further tested as growth inhibitors of T. cruzi proliferation. The results provide further insight into the role of the selenocyanate group in its antiparasitic activity.  相似文献   

19.
Bártová E  Sedlák K 《Parasitology》2011,138(11):1369-1371
In the Czech Republic, sera from 551 clinically healthy adult slaughtered pigs (females, 6-8 months old) were collected during the first half of June in 2010. Sera were tested for Toxoplasma gondii-specific IgG antibodies by an enzyme-linked immunosorbent assay; samples with more than 50% S/P were considered as positive. The same samples were also analysed for Neospora caninum antibodies using a commercial competitive-inhibition enzyme-linked immunosorbent assay; samples with more than 30% inhibition were considered as positive. Antibodies against T. gondii were found in 198 pigs (36%) in all districts with prevalences ranging from 18% to 75%. Antibodies against N. caninum were found in 16 pigs (3%); positive animals were found in 4 districts with prevalences ranging from 1% to 20%. Indication of mixed infections (concurrent presence of both N. caninum and T. gondii antibodies) was found in 8 (1·5%) pigs. The results of our study indicate that pigs in the Czech Republic have a relatively high seroprevalence for T. gondii, while they have only a low seroprevalence for N. caninum. Therefore, natural infection with T. gondii seems to be very common in Czech pigs. It is the first evidence of N. caninum antibodies in pigs in the Czech Republic. These results complete data about N. caninum infection in pigs in Europe.  相似文献   

20.
We examined the prevalence of antibodies to zoonotic protozoan parasites ( Trypanosoma cruzi, Toxoplasma gondii, and Encephalitozoon cuniculi) and protozoans of veterinary importance ( Neospora caninum, Sarcocystis neurona, and Besnoitia darlingi) in a population of North American opossums ( Didelphis virginiana) from Louisiana. Samples from 30 opossums were collected as part of a survey for T. cruzi in Louisiana. Frozen sera from these 30 opossums were examined using an indirect immunofluorescent antibody test (IFAT) against in vitro-produced antigenic stages of these protozoans. Additionally, 24 of the 30 samples were examined using hemoculture, and all 30 were examined in the modified direct agglutination test (MAT) for antibodies to To. gondii. The prevalences of reactive IFAT samples were as follows: 60% for T. cruzi, 27% for To. gondii, 23% for E. cuniculi, 17% for S. neurona, 47% for B. darlingi, and 0% for N. caninum. Hemoculture revealed that 16 (67%) of 24 samples were positive for T. cruzi, compared to 18 of 30 (60%) by IFAT. The sensitivity and specificity for the IFAT compared to hemoculture was 100% for each. The modified direct agglutination test revealed that 9 (30%) of the 30 samples from opossums had antibodies to To. gondii , compared to 8 (27%) using the IFAT. The sensitivity and specificity of the IFAT compared to the MAT was 100% and 72%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号