首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By cloning and sequencing specific randomly amplified polymorphic DNA (RAPD) products, we have developed pairs of PCR primers that can be used to detect Xylella fastidiosa in general, and X. fastidiosa that cause citrus variegated chlorosis (CVC) specifically. We also identified a CVC-specific region of the X. fastidiosa genome that contains a 28-nucleotide insertion, and single base changes that distinguish CVC and grape X. fastidiosa strains. When using RAPD products to develop specific PCR primers, we found it most efficient to screen for size differences among RAPD products rather than presence/absence of a specific RAPD band.  相似文献   

2.
AIMS: The aim of this study was to evaluate the diversity of Xylella fastidiosa isolated from citrus trees affected by Citrus Variegated Chlorosis (CVC). METHODS AND RESULTS: The antibiotic susceptibility by agar disc diffusion and minimum inhibitory concentration (MIC) methods was observed for all drug evaluated, except for penicillin-G. Genetic diversity by RAPD analysis revealed three major groups (citrus, coffee and grapevine), being the citrus group more similar with the coffee group than with the grapevine group. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the possibility to use these antibiotics susceptibility as markers in the development of a cloning vector and penicillin-G could be used as a selective marker for the isolation of X. fastidiosa from citrus plants.  相似文献   

3.
4.
5.
Chlorosis induced with a supraoptimum dose of phosphorus in nutrient solution (69 mg P l-1) was reverted by spraying of leaves of chlorotio maize plants (Zea mays L.) with FeEDTA. Biomass formation, chlorophyll and iron content were decreased in the above-ground parts of plants grown under chlorosis-inducing conditions. Spraying always decreased content of inorganic phosphorus (Pi/Fe ratio was significantly changed), increased chlorophyll content in old plants and stimulated dry mass formation at supraoptimum phosphorus doses. FeEDTA application improved phosphate utilization (portion of phosphate in organic bonds was increased). This may be the basis of chlorosis-reverting effect of FeEDTA.  相似文献   

6.
Summary In an ultrastructural and cytochemical study of tentoxin-treatedSorghum bicolor (L.) Moench, both bundle sheath and mesophyll plastids were severely affected, Plastids from chlorotic leaf areas lacked most internal membranes yet had plastid ribosomes and large fibrillar areas of plastid DNA. In recovered areas (mottled yellow and green), cells were found that had plastids of near-normal ultrastructure as well as the severely affected plastid-types found in chlorotic leaf areas. Polyphenol oxidase (PPO) cytochemistry of these mottled leaf areas indicated that all recovered mesophyll plastids had PPO whereas all the abnormal mesophyll plastids showed no activity. Because bundle sheath plastids ofSorghum have no PPO activity at any developmental stage, yet are affected by tentoxin, PPO cannot be uniquely affected by this toxin. We suggest that tentoxin may affect the transport of cytosolic proteins into the plastid.  相似文献   

7.
Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X. fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X. fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X. fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X. fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.  相似文献   

8.
9.
Our previous studieshave shown that inhibition of polyamine biosynthesis increases thesensitivity of intestinal epithelial cells to growth inhibition inducedby exogenous transforming growth factor- (TGF-). This study wentfurther to determine whether expression of the TGF- receptor genesis involved in this process. Studies were conducted in the IEC-6 cellline, derived from rat small intestinal crypt cells. Administration of-difluoromethylornithine (DFMO), a specific inhibitor of ornithinedecarboxylase (the rate-limiting enzyme for polyamine synthesis), for 4 and 6 days depleted cellular polyamines putrescine, spermidine, andspermine in IEC-6 cells. Polyamine depletion by DFMO increased levelsof the TGF- type I receptor (TGF-RI) mRNA and protein but had noeffect on the TGF- type II receptor expression. The inducedTGF-RI expression after polyamine depletion was associated with anincreased sensitivity to growth inhibition induced by exogenous TGF-but not by somatostatin. Extracellular matrix laminin inhibited IEC-6cell growth without affecting the TGF- receptor expression. Lamininconsistently failed to induce the sensitivity of TGF--mediatedgrowth inhibition. In addition, decreasing TGF-RI expression bytreatment with retinoic acid not only decreased TGF--mediated growthinhibition in normal cells but also prevented the increased sensitivityto exogenous TGF- in polyamine-deficient cells. These resultsindicate that 1) depletion of cellular polyamines by DFMOincreases expression of the TGF-RI gene and 2) increasedTGF-RI expression plays an important role in the process throughwhich polyamine depletion sensitizes intestinal epithelial cells togrowth inhibition induced by TGF-.

  相似文献   

10.
Summary Enzymatic resolution of (±)-endo-bicyclo[2.2.1]hept-5-en-2-ol (1a) catalysed byCandida cylindracea lipase using either acetoneoxime acetate (2a) or biacetyldioxime diacetate (3a) as acyl donor proceeds with moderate to good enantioselectivity (E=13 and 22, resp.) although clear limitations of this method are observed: firstly, a severe depletion of the reaction rate at elevated cosubstrate (acyl donor) concentrations and secondly, the reversibility of the reaction.  相似文献   

11.
AIMS: To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). METHODS AND RESULTS: The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. CONCLUSIONS: The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.  相似文献   

12.
While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixtyfold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The objective of this study was to evaluate the growth and nutrient-uptake characteristics of Fe-deficiency resistant and susceptible subclover (Trifolium subterraneum L., T. yanninicum Katzn. and Morley, T. brachcalycinum Katzn. and Morley) cultivars on a calcareous soil. Ten subclover cultivars showing varying susceptibilities to Fe-deficiency chlorosis (Karridale, Nangeela, Geraldton, Mt. Barker, Woogenellup, Larisa, Trikkala, Rosedale, Koala and Clare) were grown on a low-Fe, calcareous soil (Petrocalcic Paleustoll) under moist (18% water content, 85% of water holding capacity) and water-saturated conditions using a Cone-tainer® culture system. Chlorosis and its correlation with growth traits and mineral nutrition of the 10 cultivars were examined. The Fe-deficiency susceptibilities of the 10 cultivars decreased in the above order under the moist condition, but in slightly different order under the saturated condition. Shoot and root dry weights, total dry weight, and root-to-shoot ratio were each negatively correlated with chlorosis under both soil-moisture conditions, as was total shoot content of P, Ca, Fe, Mn and Zn. Shoot P and Fe concentrations were each positively correlated with chlorosis under the moist soil condition. Iron and Cu utilization efficiencies (biomass per unit weight of nutrient) in the shoot were each negatively correlated with chlorosis under the moist soil condition. These results suggest that there may be several characteristics of Fe-deficiency chlorosis resistance in subclovers, such as a more effective soil-Fe mobilizing mechanism(s), more balanced nutrition, lower required Fe concentration in the shoot, higher shoot-Fe utilization efficiency, and higher root/shoot ratio under Fe-deficiency stress conditions.  相似文献   

14.
A xylem-limited bacterium resemblingXylella fastidiosa has been shown previously by electron mmcroscopy to be associated with citrus variegated chlorosis (CVC), a new disease of sweet organe tress in Brazil. A bacterium was consistently cultured from plant tissues from CVC twigs of sweet orange trees but not from tissues of healthy trees on several cell-free media known to support the growth ofXylella fastidiosa. Bacterial colonies typical ofX. fastidiosa became visible on PW, CS20, and PD2 agar media after 5 and 7–10 days of incubation, respectively. The cells of the CVC bacterium were rod-shaped, 1.4–3 m in length, and 0.2–0.4 m in diameter, with rippled walls. An antiserum against an isolate (8.1.b) of the bacterium gave strong positive reactions to double-antibody-sandwich (DAS), enzyme-linked immunosorbent assay (ELISA) with other cultured isolates from CVC citrus, as well as with several type strains ofX. fastidiosa. This result indicates that the CVC bacterium is a strain ofX. fastidiosa. ELISA was also highly positive with all leaves tested from CVC-affected shoots. Leaves from symptomless tress reacted negatively. Sweet organe seedlings inoculated with a pure culture of the CVC bacterium supported multiplication of the bacterium, which became systemic with 6 months after inoculation and could be reisolated from the inoculated seedlings. Symptoms characteristic of CVC developed 9 months post inoculation.  相似文献   

15.
Callus cultures were used to investigate and delineate responses of potato to iron (Fe) deficiency conditions over different culture durations. The morphological responses included chlorotic symptoms, reduced fresh weight and area of callus growth on Fe-deficient medium compared to calli grown under Fe sufficient conditions. Biochemically, potato calli under Fe deficit exhibited decreases in chlorophyll and carotenoid contents, reduction in activities of antioxidant enzymes (peroxidase, catalase and ascorbate peroxidase), as well as an increase in ferric chelate reductase (FCR) activity, lipid peroxidation, phenolic production and hydrogen peroxide (H2O2) level. Perls staining revealed sparse Fe distribution in Fe-deficient callus cells whereas Fe was widely distributed and intensely stained among numerous actively dividing cells in Fe-sufficient calli. These responses of calli to Fe deficiency were more pronounced with prolonged exposure to such stress leading to severe chlorosis and/or death of cells in chlorosis-susceptible calli but potential chlorosis-tolerant callus cells maintained their greenness and viability. Over a prolonged period in culture, significantly positive correlations were found among callus fresh weight, chlorophyll and carotenoid contents, antioxidant enzyme activities and lipid peroxidation as Fe supplies to the medium was increased. FCR activity was strongly correlated in a negative manner with Fe deficiency, chlorophyll content and peroxidase activity. The responses of calli to Fe supply can serve as reliable indicators for detecting chlorosis tolerance and/or nutrient deficiency stress.  相似文献   

16.
Inhibition of a cell-surface proteinase can inhibit the growth of many normal human cell types in culture. Some tumour cells are also sensitive to proteinase inhibitors, but others are resistant, and continue to grow in the presence of these inhibitors. Here we describe two human tumour cell lines which convert from the sensitive to the resistant state. In one case, the conversion occurs during routine passaging, but, in the other, it is determined by growth conditions, and is reversible.  相似文献   

17.
Summary Forty-three strains of feeder root colonizing fluorescent pseudomonads from rough lemon (Citrus jambhiri Lush.) roots were examined for effects on rough lemon and sweet orange (Citrus sinensis Osbeck) seedlings. Plants inoculated with a single bacterial soil-drench had, after 10 months, a range of stimulatory (to 116%) and inhibitory effects (to 52%). Stimulatory bacteria particularly increased growth of root systems. Cultivar-specific inhibition and stimulation was evident in inoculations of rough lemon and sweet orange seedlings. Populations of fluorescent rhizobacteria on inoculated and noninoculated, as well as on stimulated and nonstimulated seedlings, did not differ significantly (10.8×106 to 30.3×106 CFU/g root). Population of fluorescent rhizobacteria on seedlings were higher than populations on feeder roots from grove trees (2.8 to 5.7×106 CFU/g). Ninety-four and 81% of 251 fluorescent strains produced antibiotics against the fungusGeotrichum candidum and the bacteriumErwinia stewartii, respectively. Antibiotic activities of 90% of the antibiotic producing strains were repressed by Fe3+, indicating siderophore production. In comparison, only 9.6 and 15% of 94 randomly selected nonfluorescentPseudomonas strains were antibiotic producers. Differences between stimulatory and inhibitory or neutral bacteria were not apparent from antibiosis tests. On the basis of physiological tests,Pseudomonas putida was the most abundant (>62%) pseudomonad species on rough lemon roots. Growth stimulating strains appeared to be in bothP. putida andP. fluorescens groups. FewP. aeruginosa strains were identified on citrus roots.Florida Agricultural Experiment Stations Journal Series No.  相似文献   

18.
Animal studies suggest that prostanoids (i.e., such as prostacyclin) may sensitize or impair baroreceptor and/or baroreflex responsiveness depending on the site of administration and/or inhibition. We tested the hypothesis that acute inhibition of cyclooxygenase (COX), the rate-limiting enzyme in prostanoid synthesis, impairs baroreflex regulation of cardiac period (R-R interval) and muscle sympathetic nerve activity (MSNA) in humans and augments pressor reactivity. Baroreflex sensitivity (BRS) was determined at baseline (preinfusion) and 60 min after (postinfusion) intravenous infusion of a COX antagonist (ketorolac; 45 mg) (24 +/- 1 yr; n = 12) or saline (25 +/- 1 yr; n = 12). BRS was assessed by using the modified Oxford technique (bolus intravenous infusion of nitroprusside followed by phenylephrine). BRS was quantified as the slope of the linear portion of the 1) R-R interval-systolic blood pressure relation (cardiovagal BRS) and 2) MSNA-diastolic blood pressure relation (sympathetic BRS) during pharmacological changes in arterial blood pressure. Ketorolac did not alter cardiovagal (19.4 +/- 2.1 vs. 18.4 +/- 2.4 ms/mmHg preinfusion and postinfusion, respectively) or sympathetic BRS (-2.9 +/- 0.7 vs. -2.6 +/- 0.4 arbitrary units.beat(-1).mmHg(-1)) but significantly decreased a plasma biomarker of prostanoid generation (plasma thromboxane B2) by 53 +/- 11%. Cardiovagal BRS (21.3 +/- 3.8 vs. 21.2 +/- 3.0 ms/mmHg), sympathetic BRS (-3.4 +/- 0.3 vs. -3.2 +/- 0.2 arbitrary units.beat(-1).mmHg(-1)), and thromboxane B2 (change in -1 +/- 12%) were unchanged in the control (saline infusion) group. Pressor responses to steady-state incremental (0.5, 1.0, and 1.5 microg.kg(-1).min(-1)) infusion (5 min/dose) of phenylephrine were not altered by ketorolac (n = 8). Collectively, these data indicate that acute pharmacological antagonism of the COX enzyme does not impair BRS (cardiovagal or sympathetic) or augment pressor reactivity in healthy young adults.  相似文献   

19.
张俊娥 《广西植物》2010,30(5):682-685
为了探讨柑橘愈伤组织不能再生的原因,试图寻找柑橘愈伤组织生长速度与其体细胞胚胎发生之间的关系,对7种柑橘类型的29种基因型的愈伤组织的生长速度进行了测定,并对愈伤组织生长速度与体细胞胚胎发生之间的相关性进行了统计分析。结果表明,柑橘愈伤组织生长速度与体细胞胚胎发生之间的相关系数为r=-0.3683。由此推断在这两者之间还存在其它影响因素。  相似文献   

20.
Human colon carcinoma cells HCT116 that lack transforming growth factor beta (TGF-beta) type II receptor (RII) demonstrated restoration of autocrine TGF-beta activity upon reexpression of RII without restoring inhibitory responses to exogenous TGF-beta treatment. RII transfectants (designated RII Cl 37) had a longer lag phase relative to NEO-transfected control cells (designated NEO pool) before entering exponential growth in tissue culture. The prolonged growth arrest of RII Cl 37 cells was associated with markedly reduced cyclin-dependent kinase (CDK)2 activity. Our results demonstrate that p21 induction by autocrine TGF-beta is responsible for reduced CDK2 activity, which at least partially contributes to prolonged growth arrest and reduced cell proliferation in RII Cl 37 cells. In contrast to RII transfectants, HCT116 cells transfected with chromosome 3 (designated HCT116Ch3), which bears the RII gene, restored the response to exogenous TGF-beta as well as autocrine TGF-beta activity. Autocrine TGF-beta activity in HCT116Ch3 cells induced p21 expression as seen in RII Cl 37 cells; however, in addition to autocrine activity, HCT116Ch3 cells responded to exogenous TGF-beta as decreased CDK4 expression and reduced pRb phosphorylation mediated a TGF-beta inhibitory response in these cells. These results indicate that autocrine TGF-beta regulates the cell cycle through a pathway different from exogenous TGF-beta in the sense that p21 is a more sensitive effector of the TGF-beta signaling pathway, which can be induced and saturated by autocrine TGF-beta, whereas CDK4 inhibition is a less sensitive effector, which can only be activated by high levels of exogenous TGF-beta  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号