首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The QSOX1 protein (Quiescin Sulfhydryl oxidase 1) catalyzes the formation of disulfide bonds and is involved in the folding and stability of proteins. More recently, QSOX1 has been associated with tumorigenesis and protection against cellular stress. It has been demonstrated in our laboratory that QSOX1 reduces proliferation, migration and invasion of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, QSOX1 expression has been shown to be induced by oxidative or ER stress and to prevent cell death linked to these stressors. Given the function of QSOX1 in these two processes, which have been previously linked to autophagy, we wondered whether QSOX1 might be regulated by autophagy inducers and play a role in this catabolic process. To answer this question, we used in vitro models of breast cancer cells in which QSOX1 was overexpressed (MCF-7) or extinguished (MDA-MB-231). We first showed that QSOX1 expression is induced following amino acid starvation and maintains cellular homeostasis. Our results also indicated that QSOX1 inhibits autophagy through the inhibition of autophagosome/lysosome fusion. Moreover, we demonstrated that inhibitors of autophagy mimic the effect of QSOX1 on cell invasion, suggesting that its role in this process is linked to the autophagy pathway. Previously published data demonstrated that extinction of QSOX1 promotes tumor growth in NOG mice. In this study, we further demonstrated that QSOX1 null tumors present lower levels of the p62 protein. Altogether, our results demonstrate for the first time a role of QSOX1 in autophagy in breast cancer cells and tumors.  相似文献   

2.
Abstract: The involvement of cell cycle-regulatory proteins in apoptosis of neuronally differentiated PC12 cells induced by the removal of nerve growth factor and serum was examined. Three major findings are presented. (1) Cdc2 kinase protein levels increased fivefold in apoptotic PC12 cells by day 3 of serum and nerve growth factor deprivation. Histone H1 kinase activity was increased significantly in p13suc1 precipitates of apoptotic PC12 cells, which was due to increased activation and/or expression of cdc2 kinase. (2) The protein levels of cyclin-dependent kinase 4, cyclin D, and proliferating cell nuclear antigen that are normally expressed in the cell cycle were increased during neuronal PC12 cell apoptosis. (3) The levels of the catalytic subunit, but not the regulatory subunit of the calcium/calmodulin-dependent protein phosphatase 2B, decreased significantly concomitant with a significant decrease in protein phosphatase 2B activity early in the apoptotic process. Protein phosphatase 2A activity decreased slightly but significantly after 3 days of serum and nerve growth factor deprivation, and no alterations in protein phosphatase 1 were observed during the apoptotic process. These data demonstrate that certain cell cycle-regulatory proteins are inappropriately expressed and that alterations in specific phosphorylation events, as indicated by the increase in histone H1 kinase activity and the decrease in protein phosphatase 2B activity, are most likely occurring during apoptosis of PC12 cells. These observations support the hypothesis that apoptosis may be due in part to a nondividing cell's uncoordinated attempt to reenter and progress through the cell cycle.  相似文献   

3.
目的:乳腺癌细胞的恶性增殖和易于侵袭转移特性与其对患者的危害直接相关,因此,探究其产生的分子机制,对其有效防治具有重要意义。静息巯基氧化酶-1(QSOX1)是巯基氧化酶家族成员之一,有研究证明其对细胞内蛋白质折叠过程中二硫键形成及细胞外基质的形成发挥重要作用。由于QSOX1在乳腺癌和胰腺癌等多种癌细胞中过表达,将探索QSOX1对乳腺癌细胞过度增殖和侵袭转移方面的可能作用。方法:通过利用CRISPR/Cas9技术构建QSOX1基因敲除和敲入的乳腺癌细胞模型,检测分析QSOX1对乳腺癌细胞MCF-7的分裂增殖、侵袭迁移能力等方面的影响。结果:利用CRISPR/Cas9基因编辑技术成功构建了QSOX1基因敲除和敲入的乳腺癌MCF-7细胞株,其与对照野生型组细胞相比,QSOX1基因敲除株的增殖能力显著下降,癌细胞在体外的迁移和侵袭能力受到明显抑制;而QSOX1基因敲入株的增殖能力和体外迁移侵袭能力却明显有提高。结论:初步揭示了QSOX1在癌症发生与发展中的作用,为进一步阐明其作用的分子机制和设计靶向药物奠定了重要基础。  相似文献   

4.
Although nitric oxide (NO) plays key signaling roles in the nervous systems, excess NO leads to cell death. In this study, the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and apoptosis signal-regulating kinase-1 (ASK1) in NO-induced cell death was investigated in PC12 cells. NO donor transiently activated p38 MAPK in the wild type parental PC12 cells, whereas the p38 MAPK activation was abolished in NO-resistant PC12 cells (PC12-NO-R). p38 MAPK inhibitors protected the cells against NO-induced death, whereas the inhibitors were not significantly protective against the cytotoxicity of reactive oxygen species. Stable transfection with dominant negative p38 MAPK mutant reduced NO-induced cell death. Stable transfection with dominant negative mutant of ASK1 attenuated NO-stimulated activation of p38 MAPK and decreased NO-induced cell death. These results suggest that p38 MAPK and its upstream regulator ASK1 are involved in NO-induced PC12 cell death.  相似文献   

5.
6.
The present study aimed to examine the protective effect of ginsenoside Rg1 against colistin-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Ginsenoside Rg1 was shown to elevate cell viability, decrease levels of malondialdehyde and intracellular reactive oxygen species, enhance activity of superoxide dismutase and glutathione, and decrease the release of cytochrome-c, formation of DNA fragmentation in colistin-treated PC12 cells. Ginsenoside Rg1 also reversed the increased caspase-9 and -3 mRNA levels caused by colistin in PC12 cells. These results suggest that ginsenoside Rg1 exerts a neuroprotective effect on colistin-induced neurotoxicity in PC12 cells, at least in part, via the inhibition of oxidative stress, prevention of apoptosis mediated via mitochondria pathway. Co-administration of ginsenoside Rg1 highlights the potential to increase the therapeutic index of colistin.  相似文献   

7.
Thymoquinone (TQ), a bioactive component of black caraway seed (Nigella sativa) oil, is reported to have antineoplastic properties. In this study we investigated the effect of TQ on a panel of human breast cancer cell lines. Cell viability assays showed that TQ killed T-47D, MDA-MB-231, and MDA-MB-468 cells via p53-independent induction of apoptosis; however, MCF-7 cells were refractory to the cytotoxic action of TQ. Western Blot analysis showed that MCF-7 cells expressed high levels of cytoprotective NADPH quinone oxidoreductase 1 (NQO1), which was responsible for TQ-resistance since inhibition of NQO1 with dicoumarol rendered MCF-7 cells TQ-sensitive. These findings may be clinically important when considering TQ as a possible adjunct treatment for breast cancer since a high percentage of breast tumors express NQO1.  相似文献   

8.
9.
Neuronal apoptosis in rat pheochromocytoma PC12 cells, which was confirmed by TUNEL (terminal transferase-mediated dUTP-biotin nick end-labeling) staining and detection of chromatin condensation, appeared within 8 h after nerve growth factor (NGF) deprivation. Prostaglandin (PG) E1 (10(-7)-10(6) M) reduced the incidence of apoptotic cell death in PC12 cells. The genes encoding PG transporter specific to prostaglandins such as PGE2 or PGF2alpha were expressed in the cell lines as shown by RT-PCR. Bromcresol green, an inhibitor of PG transporter, reversed the antiapoptotic effect of PGE1. Moreover, treatment of PC12 cells with an antisense oligonucleotide corresponding to PG transporter cDNA also blocked the inhibitory effects of PGE1 on apoptotic cell death. In addition, PGE1 counteracted the increased activities of stress-activated protein kinase/cJun N-terminal kinase within 1-2 h after NGF deprivation in PC12 cells. These results indicated that the antiapoptotic effect of PGE1 in NGF-deprived PC12 cells was achieved by inhibitory signals following uptake into neurons through the PG transporter.  相似文献   

10.
Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.  相似文献   

11.
Quiescin sulfhydryl oxidase 1 (QSOX1) oxidizes sulfhydryl groups to form disulfide bonds in proteins. We previously mapped a peptide in plasma from pancreatic ductal adenocarcinoma (PDA) patients back to an overexpressed QSOX1 parent protein. In addition to overexpression in pancreatic cancer cell lines, 29 of 37 patients diagnosed with PDA expressed QSOX1 protein in tumor cells, but QSOX1 was not detected in normal adjacent tissues or in a transformed, but nontumorigenic cell line. To begin to evaluate the advantage QSOX1 might provide to tumors, we suppressed QSOX1 protein expression using short hairpin (sh) RNA in two pancreatic cancer cell lines. Growth, cell cycle, apoptosis, invasion, and matrix metalloproteinase (MMP) activity were evaluated. QSOX1 shRNA suppressed both short and long isoforms of the protein, showing a significant effect on cell growth, cell cycle, and apoptosis. However, QSOX1 shRNA dramatically inhibited the abilities of BxPC-3 and Panc-1 pancreatic tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, gelatin zymography indicated that QSOX1 plays an important role in activation of MMP-2 and MMP-9. Taken together, our results suggest that the mechanism of QSOX1-mediated tumor cell invasion is by activation of MMP-2 and MMP-9.  相似文献   

12.
目的:应用RNA干扰(RNAi)技术特异地干扰HAX-1在乳腺癌细胞MCF-7中的表达,研究其在过氧化氢诱导的细胞凋亡中的作用。方法:应用载体pSR-GFP/Neo构建针对HAX-1基因的小干扰RNA(siRNA)表达质粒;转染MCF-7细胞,G418筛选稳定细胞系,Western blot鉴定筛选的细胞克隆;用流式细胞仪检测筛选的细胞系在过氧化氢条件下的凋亡率。结果:电泳和测序证实合成的siRNA序列正确并准确克隆到pSR-GFP/Neo载体中;Western blot证实获得MCF-7/HAX-1 siRNA稳定细胞株,其HAX-1蛋白水平降低95%左右;用1mmol/L过氧化氢处理获得的稳定细胞株8h,细胞凋亡率明显高于对照组。结论:HAX-1能够保护乳腺癌细胞MCF-7免于过氧化氢诱导的细胞凋亡。  相似文献   

13.
Previous experimental studies have shown that high dietary fat intake is associated with mammary carcinogenesis. In the current study, the effect of 5-LOX or 12-LOX inhibitors on human breast cancer cell proliferation and apoptosis, as well as the possible mechanisms were investigated. The LOX inhibitors, NDGA, Rev-5901, and baicalein all inhibited proliferation and induced apoptosis in MCF-7 (ER+) and MDA-MB-231 (ER-) breast cancer cell in vitro. In contrast, the LOX products, 5-HETE and 12-HETE had mitogenic effects, stimulating the proliferation of both cell lines. These inhibitors also induced cytochrome c release, caspase-9 activation, as well as downstream caspase-3, caspase-7 activation, and PARP cleavage. LOX inhibitor treatment also reduced the levels of anti-apoptotic proteins Bcl-2 and Mcl-1 and increased the levels of the pro-apoptotic protein bax. In conclusion, blockade of both 5-LOX and 12-LOX pathways induces apoptosis in breast cancer cells through the cytochrome c release and caspase-9 activation, with changes in the levels of Bcl-2 family proteins.  相似文献   

14.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

15.
16.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

17.
Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.  相似文献   

18.
Insulin-like growth factor binding protein-3 (IGFBP-3) is a multi-functional protein known to induce apoptosis of various cancer cells in an insulin-like growth factor (IGF)-dependent and IGF-independent manner. In our previous study, we found that IGFBP-3 induced apoptosis through the activation of caspases in 786-O cells. In this study, we further examined that whether IGFBP-3 induced apoptosis through the induction of cell cycle arrest in 786-O, A549 and MCF-7 cells. Our results showed that overexpressed IGFBP-3 resulted in typical apoptotic ultrastructures in A549 cells under transmission electron microscope. The result of flow cytometry analysis indicated that IGFBP-3 arrested the cell cycle at G1-S phase in 786-O, A549 and MCF-7 cells. In A549 cells, quantitative real-time PCR and Western blot analysis showed a significant change in the expression of cell cycle-regulated proteins—a decrease in cyclin E1 expression, an increase in p21 expression. These results indicate a possible mechanism for G1 cell cycle arrest by IGFBP-3. Taken together, cyclin E1 and p21 may play important roles in the IGFBP-3-inducing G1 cell cycle arrest and apoptosis in several human cancer cells.  相似文献   

19.
目的:研究RUNX1在PC12细胞氧糖剥夺模型中的表达及其对PC12细胞的保护作用,并探讨其相关机制。方法:体外培养PC12细胞并构建氧糖剥夺模型,将细胞分为对照组、氧糖剥夺组、RUNX1 si RNA处理组、si RNA对照处理组(sicontrol)、pc DNA3.1-RUNX1处理组(pc RUNX1)和pc DNA3.1对照处理组(pc DNA 3.1)。q RT-PCR和western blot检测RUNX1、磷酸化Akt(p-Akt)和总Akt(t-Akt)表达水平;MTT法检测细胞存活率;Annexin V-FITC/PI双染法检测细胞凋亡。结果:与对照组比较,RUNX1在PC12细胞氧糖剥夺模型中表达水平显著升高;沉默RUNX1可下调PC12细胞的存活率,促进细胞的凋亡,有效抑制p-Akt蛋白表达,而过表达RUNX1显著提高细胞存活率,抑制细胞凋亡,并上调p-Akt蛋白表达;此外,PI3K/Akt通路抑制剂LY294002明显抑制RUNX1过表达对细胞存活率的促进作用和对细胞凋亡的抑制作用。结论:RUNX1可通过PI3K/Akt信号通路保护OGD对PC12细胞的损伤作用。  相似文献   

20.
目的:探讨脑源性神经营养因子(brain derived neurotrophic factor,BDNF)在PC12细胞凋亡中的作用。方法:设计并合成针对BDNF mRNA序列的小片段干扰RNA(siRNA),利用lipofectamine 2000将siRNA转染入PC12细胞中或给与6-OHDA损伤,给与/不给予BDNF蛋白保护,采用定量PCR和免疫荧光法检测BDNF mRNA和蛋白表达水平;采用上清液乳酸脱氢酶(LDH)释放量测定和流式细胞仪法检测siRNA对细胞凋亡的影响。结果:转染siRNA的细胞的BDNF mRNA的表达量比正常组细胞减少73%,而转染作为对照的scrambled siRNA的细胞的BDNF mRNA的表达没有明显变化。BDNF RNA干扰与6-OHDA神经毒性一样可诱导PC12细胞的LDH释放和细胞凋亡。给予BDNF蛋白保护后细胞毒性减轻。结论:BDNF基因下调可以导致PC12细胞的凋亡,BDNF蛋白对PC12细胞有保护作用,为进一步进行动物体内研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号