首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In previous work we identified several specific sites in Escherichia coli tRNAfMet that are essential for recognition of this tRNA by E. coli methionyl-tRNA synthetase (MetRS) (EC 6.1.1.10). Particularly strong evidence indicated a role for the nucleotide base at the wobble position of the anticodon in the discrimination process. We have now investigated the aminoacylation activity of a series of tRNAfMet derivatives containing single base changes in each position of the anticodon. In addition, derivatives containing permuted sequences and larger and smaller anticodon loops have been prepared. The variant tRNAs have been enzymatically synthesized in vitro by using T4 RNA ligase (EC 6.5.1.3). Base substitutions in the wobble position have been found to reduce aminoacylation rates by at least five orders of magnitude. Derivatives having base substitutions in the other two positions of the anticodon are aminoacylated 55-18,500 times slower than normal. Nucleotides that have specific functional groups in common with the normal anticodon bases are better tolerated at each of these positions than those that do not. A tRNAfMet variant having a six-membered loop containing only the CA sequence of the anticodon is aminoacylated still more slowly, and a derivative containing a five-membered loop is not measurably active. The normal loop size can be increased by one nucleotide with a relatively small effect on the rate of aminoacylation, which indicates that the spatial arrangement of the nucleotides is less critical than their chemical nature. We conclude from these data that recognition of tRNAfMet requires highly specific interactions of MetRS with functional groups on the nucleotide bases of the anticodon sequence. Several other aminoacyl-tRNA synthetases are known to require one or more anticodon bases for efficient aminoacylation of their tRNA substrates, and data from other laboratories suggest that anticodon sequences may be important for accurate discrimination between cognate and noncoagnate tRNAs by these enzymes.  相似文献   

2.
The codon-reading properties of wobble-position variants of the unmodified form of Escherichia coli tRNASer1 (the UGA anticodon) were measured in a cell-free translation system. Two variants, with the AGA and CGA anticodons, each exclusively read a single codon, UCU and UCG, respectively. The only case of efficient wobbling occurred with the variant with the GGA anticodon, which reads the UCU codon in addition to the UCC codon. Surprisingly, this wobble reading is more efficient than the Watson-Crick reading by the variant with the AGA anticodon. Furthermore, we prepared tRNA variants with AA, UC, and CU, instead of GA, in the second and third positions and measured their relative efficiencies in the reading of codons starting with UU, GA, and AG, respectively. The specificity concerning the wobble position is essentially the same as that in the case of the codons starting with UC.  相似文献   

3.
The translational efficiency of tRNA is a property of the anticodon arm   总被引:10,自引:0,他引:10  
We have reciprocally transplanted the anticodon arm sequences of a set of amber suppressor tRNA genes, using recombinant DNA techniques. By this means, a very efficient suppressor may be converted to a poor one, and the poorest tRNA to the efficiency of the best one. In tRNA molecules of normal 2 degrees and 3 degrees structure, the suppressor efficiencies of different composite tRNAs having the same anticodon arm sequence are approximately the same. Large numbers of simultaneous changes throughout the rest of the molecule do not affect the efficiency. Selective nucleotide modification as a result of varied anticodon arm sequences cannot explain these efficiencies. Efficiencies are also unlikely to differ because of selective aminoacylation. Measurement of in vivo tRNA shows, however, that tRNA levels do vary if the anticodon arm sequence is changed. If tRNA levels are normalized, the anticodon arm effect on the translational efficiency remains. Therefore, different anticodon arms, all of normal secondary structure, are not equivalent in translation. The most efficient sequences in this series resemble those found in natural tRNAs associated with similar anticodons, as is proposed in the extended anticodon theory (Yarus, M. (1982) Science 218, 646-652). These molecules also provide some information on the specificity of nucleotide modification enzymes and on determinants of the steady-state tRNA level.  相似文献   

4.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

5.
6.
7.
In this work, we probe the role of the anticodon in tRNA recognition by human lysyl-tRNA synthetase (hLysRS). Large decreases in aminoacylation efficiency are observed upon mutagenesis of anticodon positions U35 and U36 of human tRNA(Lys,3). A minihelix derived from the acceptor-TPsiC stem-loop domain of human tRNA(Lys,3)was not specifically aminoacylated by the human enzyme. The presence of an anticodon-derived stem-loop failed to stimulate aminoacylation of the minihelix. Thus, covalent continuity between the acceptor stem and anticodon domains appears to be an important requirement for efficient charging by hLysRS. To further examine the mechanism of communication between the critical anticodon recognition elements and the catalytic site, a two piece semi-synthetic tRNA(Lys, 3)construct was used. The wild-type semi-synthetic tRNA contained a break in the phosphodiester backbone in the D loop and was an efficient substrate for hLysRS. In contrast, a truncated variant that lacked nucleotides 8-17 in the D stem-loop displayedseverely reduced catalytic efficiency. The elimination of key tRNA tertiary structural elements has little effect on anticodon-dependent substrate binding but severely impacts formation of the proper transition state for catalysis. Taken together, our studies provide new insights into human tRNA structural requirements for effective transmission of the anticodon recognition signal to the distal acceptor stem domain.  相似文献   

8.
To elucidate the minimal substrate for the plant nuclear tRNA 3' processing enzyme, we synthesized a set of tRNA variants, which were subsequently incubated with the nuclear tRNA 3' processing enzyme. Our experiments show that the minimal substrate for the nuclear RNase Z consists of the acceptor stem and T arm. The broad substrate spectrum of the nuclear RNase Z raises the possibility that this enzyme might have additional functions in the nucleus besides tRNA 3' processing. Incubation of tRNA variants with the plant mitochondrial enzyme revealed that the organellar counterpart of the nuclear enzyme has a much narrower substrate spectrum. The mitochondrial RNase Z only tolerates deletion of anticodon and variable arms and only with a drastic reduction in cleavage efficiency, indicating that the mitochondrial activity can only cleave bona fide tRNA substrates efficiently. Both enzymes prefer precursors containing short 3' trailers over extended 3' additional sequences. Determination of cleavage sites showed that the cleavage site is not shifted in any of the tRNA variant precursors.  相似文献   

9.
By utilizing an enzymatically reconstructed tRNA variant containing an altered anticodon sequence, we have examined the different biochemical behavior of translation between the Watson-Crick type and the wobble type base pair interactions at the first anticodon position. We have found that the Watson-Crick type base pair has an advantage in translation in contrast to the wobble type base pair by comparing the efficiency of transpeptidation of native tRNA(Phe) (anticodon; GmAA) with its variant tRNA (anticodon; AAA) in the poly(U)-programmed ribosome system. Thomas et al. [Proc. Natl. Acad. Sci. U.S. (1988) 85, 4242-4246] showed that the wobble codon at the ribosomal A-site accepted its cognate tRNA less efficiently than the Watson-Crick base pairing codon. We report here that the wobble interaction at the ribosomal P-site also affected the rate of translation. This variable translational rate may be a mechanism of gene regulation through preferential codon usage.  相似文献   

10.
Fluorophore of proflavine was introduced onto the 3'-terminal ribose moiety of yeast tRNA(Phe). The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNA(Phe) was measured by a singlet-singlet energy transfer. Conformational changes of tRNA(Phe) with binding of tRNA(2Glu), which has the anticodon UUC complementary to the anticodon GAA of tRNA(Phe), were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNA(2Glu) is significantly smaller. Further, using a fluorescent probe of 4-bromomethyl-7-methoxycoumarin introduced onto pseudouridine residue psi 55 in the T psi C loop of tRNA(Phe), Stern-Volmer quenching experiments for the probe with or without added tRNA(2Glu) were carried out. The results showed greater access of the probe to the quencher with added tRNA(2Glu). These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNA(2Glu) and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

11.
Extragenic suppressors of +1 frameshift mutations in proline codons map in genes encoding two major proline tRNA isoacceptors. We have shown previously that one isoacceptor encoded by the SUF2 gene (chromosome 3) contains no intervening sequence. SUF2 suppressor mutations result from the base insertion of a G within a 3'-GGA-5' anticodon, allowing the tRNA to read a 4-base code word. In this communication we describe suppressor mutations in genes encoding a second proline tRNA isoacceptor (wild-type anticodon 3'-GGU-5') that result in a novel mechanism for translation of a 4-base genetic code word. The genes that encode this isoacceptor include SUF7 (chromosome 13), SUF8 (chromosome 8), trn1 (chromosome 1), and at least two additional unmapped genes, all of which contain an intervening sequence. We show that suppressor mutations in the SUF7 and SUF8 genes result in G-to-U base substitutions at position 39 that disrupted the normal G . C base pairing in the last base pair of the anticodon stem adjacent to the anticodon loop. These anticodon stem mutations might alter the size of the anticodon loop and permit the use of a 3'-GGGU-5' sequence within the loop to read 4-base proline codons. Uncertainty regarding the exact structure of the mature suppressor tRNAs results from the possibility that anticodon stem mutations might affect sites of intervening sequence removal. The possible role of the intervening sequence in the generation of mature suppressor tRNA is discussed. Besides an analysis of suppressor tRNA genes, we have extended previous observations of the apparent relationship between tRNA genes and repetitive delta sequences found as solo elements or in association with the transposable element TY1. Hybridization studies and a computer analysis of the DNA sequence surrounding the SUF7 gene revealed two incomplete, inverted delta sequences that form a stem and loop structure located 165 base pairs from the 5' end of the tRNA gene. In addition, sequences beginning 164 base pairs from the 5' end of the trn1 gene also exhibit partial homology to delta. These observations provide further evidence for a nonrandom association between tRNA genes and delta sequences.  相似文献   

12.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

13.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

14.
15.
16.
tRNA anticodon damage inflicted by the Kluyveromyces lactis γ-toxin underlies an RNA-based innate immune system that distinguishes self from nonself species. γ-toxin arrests the growth of Saccharomyces cerevisiae by incising a single phosphodiester 3' of the wobble base of tRNA(Glu(UUC)) to generate a break with 2',3'-cyclic phosphate and 5'-OH ends. Recombinant γ-toxin cleaves oligonucleotide substrates in vitro that mimic the anticodon stem-loop of tRNA(Glu). A single 2'-deoxy sugar substitution at the wobble nucleoside abolishes anticodon nuclease activity. To gain further insights to γ-toxin's substrate specificity, we tested deoxynucleoside effects at positions other than the site of transesterification. The results attest to a stringent requirement for a ribonucleoside at the uridine 5' of the wobble base. In contrast, every other nonwobble ribonucleoside in the anticodon loop can be replaced by a deoxy without significantly affecting γ-toxin's cleavage activity. Whereas either the 5' half or the 3' half of the anticodon stem can be replaced en bloc with DNA without a major effect, simultaneously replacing both strands with DNA interfered strongly, signifying that γ-toxin requires an A-form helical conformation of the anticodon stem. We purified γ-toxin mutants identified previously as nontoxic in vivo and gauged their anticodon nuclease activities in vitro. The results highlight Glu9 and Arg151 as candidate catalytic residues, along with His209 implicated previously. By analogy to other endoribonucleases, we speculate that γ-toxin drives transesterification by general acid-base catalysis (via His209 and Glu9) and transition-state stabilization (via Arg151).  相似文献   

17.
18.
19.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号