首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of maternal ageing on the meiotic rate, on chiasma and univalent frequency as well as on heteroploidy in secondary oocytes from Djungarian hamsters was exammed. The frequency of hyperhaploid oocytes increased from 0.6% in young (8–14 weeks) to 2.8% in middle-aged (26–46 weeks) and reached 3.6% in the oldest females (49–75 weeks). On the basis of malsegregated bivalents per oocyte, nondisjunction occurred most often in the middle-aged group (5.42x10-2 bivalents per oocyte). Hereby, the large meta- and submetacentric A-D chromosomes were preferentially involved. Furthermore, the pattern of nondisjunction was not different from that expected on the basis of chromosome length or induced by colchicine. The large A-D chromosomes did not show any alteration in chiasma or univalent frequency. Terminalized chiasmata were only detected in the E group and univalents increased slightly, but not significantly in the small chromosomes (G group). At higher ages, both chromosome group were not preferentially involved in nondisjunction. Presegregation slightly increased with age and affected more or less all bivalents, whereas the incidence of diploidy significantly decreased. With respect to the rate of meiosis in oocytes from aged females, the resumption was delayed at metaphase I. Our data suggest that failures in the control of oocyte proliferation are involved in nondisjunction rather than the production-line. Furthermore, a model is proposed to explain nondisjunction of specific bivalents at certain maternal ages.  相似文献   

2.
The effects of ageing on the meiotic chromosomes of male and female mice   总被引:8,自引:1,他引:8  
R. M. Speed 《Chromosoma》1977,64(3):241-254
The effects of age on the chiasma frequencies, chiasma position and numbers of univalents at MI in males and females of three strains of mouse were examined. Males showed a slight but non significant rise in chiasma frequency in age due to an increase in bivalents with two chiasmata at the expense of single chiasmata bivalents. In contrast, females exhibited a significant decrease in chiasma frequency with age due to the loss of two chiasma bivalents with a corresponding increase in single terminal chiasmata bivalents. In both males and females there was no significant increase in univalents with age in the strains studied. Of interest was the finding of a greater degree of contraction of the MI chromosomes in the oocytes of old relative to young females, a differential contraction that was independent of culture time. This finding is discussed with regard to the production line theory and non disjunction at Anaphase in other strains of mice.  相似文献   

3.
The effects of maternal aging on the configuration of chiasmata, formation of univalents, and segregation of first meiotic (MI) chromosomes were investigated in young (5-8 mo) and old (16-19 mo) Chinese hamsters. Primary oocytes were collected only from mature follicles approximately 10 h before ovulation, and secondary oocytes were obtained from the oviducts 5 h after spontaneous ovulation. The average number of chiasmata per oocyte was significantly smaller in aged hamsters than in the young hamsters (P less than 0.001). Terminal chiasmata were found more frequently in the former group than in the latter one (P less than 0.001). These results coincided well with findings in the mouse. Since the 11 meiotic chromosomes could be divided into four morphologically distinguishable subgroups, it was possible to determine whether the same bivalent forming univalents at MI actually underwent nondisjunction in the following meiotic division. The incidence of both MI oocytes with a univalent pair and aneuploid MII oocytes due to first meiotic nondisjunction was significantly higher in the aged group than in the young group (P less than 0.01) and P less than 0.05, respectively). However, univalents occurred almost exclusively in the smallest metacentric chromosome group (96%), whereas nondisjunction took place nearly equally in each chromosomal subgroup. These results clearly showed that there was no correlation between the univalents seen at MI and nondisjunction during the first meiotic division.  相似文献   

4.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

5.
The relationship between advanced maternal age and increased risk of trisomic offspring is well known clinically but not clearly understood at the level of the oocyte. A total of 383 oocytes that failed fertilization from 107 patients undergoing in vitro fertilization were analyzed by FISH using X-, 18-, and 13/21-chromosome probes simultaneously. The corresponding polar bodies were also analyzed in 188 of these oocytes. The chromosomes in the oocyte and first polar body complement each other and provide an internal control to differentiate between aneuploidy and technical errors. Two mechanisms of nondisjunction were determined. First, nondisjunction of bivalent chromosomes resulting in two univalents going to the same pole and, second, nondisjunction by premature chromatid separation (predivision) of univalent chromosomes producing either a balanced (2 + 2) or unbalanced (3 + 1) distribution of chromatids into the first polar body and M-II oocytes. Balanced predivision of chromatids, previously proposed as a major mechanism of aneuploidy, was found to increase significantly with time in culture (P < .005), which suggests that this phenomenon should be interpreted carefully. Unbalanced predivision and classical nondisjunction were unaffected by oocyte aging. In comparing oocytes from women <35 years of age with oocytes from women > or = 40 years of age, a significant increase (P < .001) in nondisjunction of full dyads was found in the oocytes with analyzable polar bodies and no FISH errors. Premature predivision of chromatids was also found to cause nondisjunction, but it did not increase with maternal age.  相似文献   

6.
The influence of age and hormones on chromosome segregation at meiosis I was studied in female mice heterozygous for the T(2;4)1Gö translocation. Females of two age groups (18–22 and 40–56 weeks old) were stimulated for ovulation with different doses of gonadotropins (1.5 IU PMS/1.0 IU HCG or 10 IU PMS/10 IU HCG). Analysis of metaphase II oocytes revealed the highest level of hyperhaploidy (1.8%) and presegregation (4.4%) in the young females receiving the low dose. Presegregation preferentially affected the small 42 marker chromosome. There was no significant interference of the tetravalent with disjunction of the nontranslocated normal bivalents. Moreover, no remarkable difference in the mode of segregation (adjacent I, II or alternate) was observed. Recombination within the interstitial pairing segments of the chromosomes involved in the translocation allowed us to calculate crossover frequencies in ovulated oocytes. For both the large 24 and the small 42 marker chromosomes, this frequency was higher in old than in young T(2;4)1Gö/+ females. Our data do not support the production line hypothesis of Henderson and Edwards (1968) which claims that chiasma frequency in oocytes decreases with maternal age.  相似文献   

7.
J. L. Santos 《Chromosoma》1990,99(3):231-236
A partially asynaptic individual of the grasshopperEuchorthippus pulvinatus (2n = 16 + X) was analysed at meiosis, using a Giemsa C-banding technique. Long chromosomes formed univalents less frequently than did medium and short ones. Homologues which succeeded in forming bivalents showed reduced chiasma frequency, the long chromosomes being affected by most. Changes in chiasma distribution were also observed. The presence of univalents at metaphase I seems to affect the function of the spindle, since most cells at the second division were unreduced. Cytokinesis was also subsequently suppressed in a great number of these products of restitution, resulting in the formation of diploid and tetraploid spermatids. Fifteen tetraploid metaphase I cells were also found in which pairing level and chiasma frequency were almost twice the average value in normal diploid individuals. The nature of this mutant is discussed.  相似文献   

8.
To detect age-related alterations in the formation and function of the spindle apparatus, we examined in vitro maturing oocytes obtained from young (2-4 mo) and aged (greater than 9 mo) diestrous CBA/Ca mice. Observation of cells processed for antitubulin immunofluorescence revealed that oocytes from aged females progress faster through first maturation division than those from young animals. They are also more prone to nondisjunction, as shown by a significantly higher level of aneuploidy in C-banded cells arrested at metaphase II. The ability of oocytes to recover from treatment with a microtubule inhibitor, nocodazole, and the effect of the drug on spindle integrity and chromosome segregation were also studied. In both age groups, treatment of metaphase I oocytes with 10 microM nocodazole caused rapid and complete microtubule depolymerization and chromosome scattering. Upon recovery, oocytes from both age groups were able to reestablish a spindle apparatus, proceed through anaphase, and extrude a first polar body. However, nocodazole treatment led to a dramatic increase of aneuploidy. Unexpectedly, the relative rise in hyperploids was greater in oocytes from young mice than in those from aged mice, so that the absolute percentage of hyperploid metaphase II cells was similar in both age groups after drug treatment. Concomitantly, nocodazole exposure abolished or, at least, diminished intrinsic differences in the cell cycle and anaphase trigger present in the controls (e.g., the earlier onset of chromosome separation in oocytes from aged females). It shortened the period available for spindle formation before chromosome segregation in all oocytes. Therefore, our study implies that temporal differences in the progression of oocytes through maturation, in particular, the shortening of the time available for alignment of bivalents before chromosome separation occurs in oocytes of old females, are mainly responsible for age-related rises in aneuploidy. There is no indication that (1) the spindle apparatus of oocytes from aged mammals is more labile or susceptible to disturbances than the spindle apparatus of oocytes from young individuals or that (2) an increase in the number of univalents makes oocytes from aged mammals particularly prone to nondisjunction.  相似文献   

9.
Triturus cristatus carnifex provides a particularly clear example of sexual dimorphism for chiasma frequency and localisation. Oocytes from normal XX females routinely carry one proximal chiasma on each arm of their lampbrush bivalents. Spermatocytes from normal XY males have more numerous and relatively distal chiasmata. Lampbrush chromosomes from the oocytes of sex-reversed XY neofemales are found to resemble those from normal oocytes in having one proximal chiasma on each bivalent arm. A comparison of particular markers on the heteromorphic long arm of chromosome 1 provides evidence to equate the lampbrush 1A to somatic 1A, and confirms previous reports that lampbrush chromosome 1A is slightly longer than 1B. The XY sex bivalent of neofemales does not show any obvious heteromorphy of recognised marker loops. Received: 9 September 1997 / Accepted: 16 October 1997  相似文献   

10.
Chromosome pairing and chiasma frequency were studied in meiocytes at diakinesis of Lilium speciosum cv. Rosemede fixed up to 21 days after the start of either continuous or 3 day pulse colchicine treatment. The two treatments gave similar results. In pulse treated pollen mother cells (PMCs) the mean chiasma frequency per cell fell from 26.4 in controls to 8.5 after fourteen days while the mean number of univalents per cell increased from 0.05 to 17.58. There was a negative correlation between mean chiasma frequency per bivalent and per PMC in colchicine treated buds; univalents were preferentially induced in bivalents with one chiasma, and preferentially excluded in bivalents with 4 chiasmata. Some chiasmata were redistributed to surviving bivalents despite the concurrent reduction in chiasma frequency per meiocyte. — Colchicine sensitivity began in premeiotic interphase and extended to mid or late zygotene in PMCs; ongoing synapsis was unaffected. However, susceptibility to univalency was asynchronous between bivalents occurring at zygotene in short chromosomes but at late premeiotic interphase in the longest chromosomes. The number of chiasmata per bivalent could be altered by colchicine without inducing univalents, but the ultimate effect was to reduce the number of chiasmata per bivalent (or per chromosome arm) directly to zero. The major factors determining the order and extent of reduced pairing and chiasma number were total chromosome length and arm length. Pairing and chiasma formation in embryo sac mother cells were less sensitive to colchicine than in PMCs, but their behavior was otherwise similar.  相似文献   

11.
Oocytes derived from prepubertal gilts show reduced developmental competence when compared to oocytes collected from adult sows. Therefore, the aim of the study was to investigate whether gilts (4-5 months old) and adult sows (average age 3.5 years) of the same breed (Polish Landrace x Polish Large White crossbred) differ with regard to the rate of chromosomally unbalanced oocytes after IVM. COCs derived from individual pairs of slaughterhouse ovaries were matured in vitro and analyzed cytogenetically by conventional staining (Giemsa) and FISH methods (probes corresponding to centromeric regions of pig chromosomes 1 and 10). Altogether, 72 females (31 sows, 41 gilts) and 430 secondary oocytes (194 and 236 oocytes of sows and gilts, respectively) were investigated. Cytogenetic analysis revealed diploid (Giemsa, FISH) and aneuploid (FISH) spreads. The incidence of diploid oocytes was similar for sows (26.0%) and gilts (24.5%) whereas the rate of aneuploid oocytes (nullisomic/disomic) was eight times higher in gilts (10.8%) than in sows (1.3%). Diploid and aneuploid oocytes were observed in 64% of investigated females. Pig chromosome 10 was more frequently disomic/nullisomic compared to chromosome 1 suggesting, that like in human, small porcine chromosomes are often involved in the nondisjunction process. In conclusion, chromosomal imbalance significantly contributes to in vitro embryo production in the pig, since over 60% of females produced diploid or aneuploid gametes. The significantly higher rate of aneuploidy among oocytes derived from gilt ovaries may contribute to the reduced developmental competence of gametes collected from nonmature female pigs.  相似文献   

12.
Summary In five genetically different inbred lines of rye and in the seven Chinese Spring/Imperial wheatrye addition lines, chiasma distribution in rye chromosomes was studied with respect to the amount and position of constitutive heterochromatin (Giemsa C-bands). In all inbred lines, rye chromosomes with one primary terminal band were more frequently found as univalents than those with primary bands on both telomeres. These chromosomes were most probably 5R and/or 6R. In the addition lines a highly significant reduction in the number of arms bound by chiasmata was found for rye chromosomes 5R and 6R. Because of the similar chiasma distribution in the inbred lines and in the rye chromosomes of the addition lines, no effect of the wheat genome on the number of chiasmata in the rye chromosomes can be ascertained. However, a relationship between chiasma frequency and chromosome arm length seems to exist, since under reduced chiasma conditions the two shortest arms of the rye complement, those of chromosomes 5R and 6R, frequently fail to form a chiasma. No effect of the large blocks of constitutive heterochromatin in the telomeres of the rye chromosomes on the position of chiasmata within a bivalent could be established.This study was financially supported by the Deutsche Forschungsgemeinschaft  相似文献   

13.
James M. Mason 《Genetics》1976,84(3):545-572
The effects of a semidominant autosomal meiotic mutant, orientation disruptor (symbol: ord), located at 2–103.5 on the genetic map and in region 59B-D of the salivary map, have been examined genetically and cytologically. The results are as follows. (1) Crossing over in homozygous females is reduced to about seven percent of controls on all chromosomes, with the reduction greatest in distal regions. (2) Crossing over on different chromosomes is independent. (3) Reductional nondisjunction of any given chromosome is increased to about thirty percent of gametes from homozygous females. The probability of such nondisjunction is the same among exchange and nonexchange tetrads with the exception that a very proximal exchange tends to regularize segregation. (4) Equational nondisjunction of each chromosome is increased to about ten percent of gametes in homozygous females; this nondisjunction is independent of exchange. (5) The distributive pairing system is operative in homozygous females. (6) In homozygous males, reductional nondisjunction of each chromosome is increased to about ten percent, and equational nondisjunction to about twenty percent, of all gametes. (7) Cytologically, two distinct meiotic divisions occur in spermatocytes of homozygous males. The first division looks normal although occasional univalents are present at prophase I and a few lagging chromosomes are seen at anaphase I. However, sister chromatids of most chromosomes have precociously separated by metaphase II. Possible functions of the ord+ gene are considered.  相似文献   

14.
Thirty-three adult male common shrews (Sorex araneus L.) were collected from a hybrid zone between two chromosomal races that differed in Robertsonian metacentrics. Anaphase I nondisjunction frequencies were estimated on the basis of metaphase II counts. RIV and CV complex heterozygotes (four-element rings and five-element chains at meiosis I, respectively) had substantially higher nondisjunction rates than homozygotes and simple Robertsonian heterozygotes. However, at least in the case of RIV-forming hybrids, increased nondisjunction frequency did not result from malsegregation of the heterozygous complex. Extra elements found in hyperploid spreads were most frequently acrocentrics, that could not originate from a fully metacentric multivalent. Complex heterozygotes were also characterized by higher frequencies of univalents observed at diakinesis I. However, univalents did not originate from complex configurations, which were regularly formed with usually one chiasma per chromosome arm. Hence, we suppose that the presence of multivalents in the cell affects pairing and segregation of other elements at meiosis I.  相似文献   

15.
采用界面铺张制片和硝酸银一步染色的方法,对人工三倍体水晶彩鲫卵巢发育阻滞型个体的减数分裂染色体配对进行了光镜观察。在分化有初级卵母细胞的卵巢发育阻滞型的三倍体鱼中,减数分裂粗线期细胞主要的由二价体和单价体组成,也见有少量三价体和其它多价体,其染色体成员数大多在90左右;在不同细胞间,染色体的大小变化较大;配对联会过程中形成的配对叉和产生的特异蛋白在一些细胞中明显可见。文中讨论了三倍体染色体配对紊乱  相似文献   

16.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

17.
Mitotic chromosomes of the European water frogs Rana ridibunda and Rana lessonae, the parental species of Rana esculenta, differ significantly in their centromeric regions: when C-banded or when made fluorescent, the centromeres of R. ridibunda (and of ridibunda chromosomes in R. esculenta) are visible as a conspicuous dark granule or as a conspicuous fluorescent spot; the centromeres of R. lessonae (and of the lessonae chromosomes in R. esculenta) are inconspicuous or not fluorescent. Lampbrush chromosomes of these three taxa are described in detail for the first time; those of R. ridibunda and R. lessonae differ significantly in morphostructural characters such as conspicuousness of centromeres and number, form, and location of giant loops as well as in chiasma frequency. Chromosomes of the two parental species can thus be distinguished when present in lampbrush complements of hybrids. Reproduction in both sexes of natural R. esculenta lineages is hemiclonal: only the unrecombined genome of one parental species, usually R. ridibunda, is transmitted to haploid gametes (hybridogenesis). In 18 hybrids from natural populations of Poland, somatic tissues had allodiploid complements with chromosomes from each parental species. In contrast, spermatocytes I of five males and oocytes I of seven of eight females (221 of 222 oocytes) were autodiploid and contained only R. ridibunda chromosomes that formed n bivalents. These 12 hybrids thus were hybridogenetic. A single female hybrid had oocytes I (33 of 34) with genomes of both parental species; they showed various disturbances including tetraploidy, reduced number of chiasmata, and incomplete synapsis resulting in univalents. This individual thus was not hybridogenetic. The irregular lampbrush patterns indicate that such hybrids will have severely reduced fertility and most of their successful gametes will result in allotriploid progeny.  相似文献   

18.
Univalent behavior during meiosis has been examined in Drosophila melanogaster males possessing the In(1)sc4Lsc8R X chromosome using light microscopy and serial section electron microscopy. Males from two stocks, displaying high (0.40) and low (0.14) frequencies of sex chromosome nondisjunction, have been investigated. The results demonstrate that (i) sex chromosomes are more intimately paired during prometaphase I in males from the low nondisjunction stock than in males from the high nondisjunction stock, and (ii) the univalents are distributed to the poles in an unbiased manner during meiosis rather than by directed segregation of both univalents to the same pole as previously determined for other In(1)sc4Lsc8R/Y males.  相似文献   

19.
J. S. Parker 《Chromosoma》1975,49(4):391-406
A desynaptic mutant of Hypochoeris radicata, 2n = 8, has been found in a population from France. The mutant is remarkable in that at metaphase-I over 90% of PMC's have a pair of univalents while two pairs are found in only 1% of cells. Only chromosome IV is affected by the desynapsis which is controlled by a single recessive gene. Bivalent chiasma frequency in cells with a pair of univalents is higher than in cells with complete bivalent formation indicating partial dependence of cell chiasma number on the availability of some factor within the anther. The F2, produced by full-sib mating, has a raised frequency of univalents in the chromosomes other than pair IV. The higher level results from enforced sib-mating of an obligate outbreeder and is not related to the action of the major gene. It is suggested that chiasma formation is controlled both polygenically and by major genes which operate on a hierarchical system. Some genes affect the behaviour of the entire complement while the action of others is specific to individual chromosomes.  相似文献   

20.
T P Hartman  D I Southern 《Génome》1994,37(5):848-857
The sequence of female meiosis was investigated in two populations of the cabbage root fly (Delia radicum) and three populations of the onion fly (D. antiqua). In contrast with the completely achiasmate males, both species showed high levels of recombination in females. However, significant differences in chiasma frequency occurred between individuals within populations and between the populations. It was not uncommon to find aneuploidy of the X chromosomes. The autosomes occasionally showed asynapsis or desynapsis, but normal disjunction of univalents was facilitated by distance pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号