首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Severe hyperthyroidism from the time of birth causes a premature induction and termination of thymidine kinase activity in the cerebella of wild-type mice. This leads to elevated enzyme levels at postnatal days 5 and 6, with significantly lower levels by postnatal day 7 (which is actually the time of peak activity in normal animals). In this study, neonatal hyperthyroidism does not have significant effects on postnatal day 5, 6, or 7 enzyme levels in the neurological mutant staggerer. This is consistent with the hypothesis that thyroid hormone exerts its effects via the Purkinje cells, which are reduced in number and grossly stunted in the mutant.  相似文献   

2.
1. Oral intubation of glucose is more effective than intraperitoneal injection in inducing the premature appearance of hepatic glucokinase in suckling rats. 2. The inducing effect of glucose is enhanced by treatment of the animals 12 h or more earlier with 1 microgram triiodothyronine/g body weight. 3. Low but significant activities of glucokinase appear at the normal time of development in hypothyroid neonatal rats. Intubation of glucose into 13-day-old and 24-day-old hypothyroid results in the rapid appearance of glucokinase similar to that in normal animals treated likewise. 4. The enhancing effect of thyroid hormones on glucokinase induction by glucose does not necessarily mean that the normal postnatal increase in plasma thyroid hormones is essential for the normal appearance of glucokinase activity at the time of weaning. Other possible explanations are discussed.  相似文献   

3.
Factors contributing to modifications in the capability for enzyme adaptation as an expression of aging are reviewed. Specific examples of altered enzyme adaptations during aging include the responses of hepatic glucokinase activity to glucose and hepatic tyrosine aminotransferase activity to starvation in Sprague-Dawley rats. These impaired enzyme adaptations apparently are not the consequence of alterations in hepatic function during aging. Instead, they reflect disturbances in extrahepatic hormonal regulatory mechanisms. Specific examples include modifications in the control of circulating levels of insulin glucagon, corticosteroids, and thyroid hormones. Age-dependent changes in the regulation of circulating levels of insulin probably originate within the impaired ability of pancreatic islets of Langerhans to secrete the hormone in response to glucose. The rationale for exploiting this experimental approach as a means to understand biological aging is discussed.  相似文献   

4.
Glucokinase and NADP:malate dehydrogenase (malic enzyme) first appear in liver when rat pups are weaned from milk which is high in fat to lab chow which is high in carbohydrate. To examine the influence of diet during the early neonatal period, before developmental changes in the circulating concentrations of thyroid and adrenocortical hormones occur, high-carbohydrate formula (56% of calories from carbohydrate), isocaloric and isonitrogenous with rat milk, was intermittently infused via gastrostomy starting on the second day of life. Pups had no further access to their dams. Body weights attained by these pups were at least 90% of those attained by mother-fed pups, which served as controls. In artificially reared rats fed the high-carbohydrate formula, on Day 4, glucokinase and malic enzyme were 30 and 18% of adult activity, respectively; on Day 10, glucokinase and malic enzyme were 71 and 96% of adult activity, respectively. On Days 4 and 10 glucose-6-phosphate dehydrogenase was elevated four- to fivefold in pups fed the high-carbohydrate formula compared to mother-fed pups. A second isocaloric formula, with 22% of calories from carbohydrate but low in protein, resulted in intermediate levels of all three enzymes on Day 10. Pups fed the high-carbohydrate formula has plasma insulin concentrations four- to fivefold greater than mother-fed pups on both Days 4 and 10. Triiodothyronine administration (1 microgram/g body wt) on Day 1 enhanced the induction of malic enzyme but not glucokinase on Day 4 in pups fed the high-carbohydrate formula. The results demonstrate that neonatal rat liver is competent to respond to high carbohydrate intake by induction of glucokinase and malic enzyme.  相似文献   

5.
1. Feeding a high-glucose diet to weanling rats showed that high hepatic glucokinase activities could be induced at 18 days of age, i.e. 2 days after development of the enzyme begins. 2. The normal development of glucokinase activity can be retarded by weaning rats on to carbohydrate-free, high-fat and high-protein diets. 3. Precocious development of the enzyme before 16 days of age cannot be induced by oral glucose administration. 4. It is concluded that the ability to synthesize glucokinase develops very rapidly and that the nature of the diet determines the normal developmental pattern.  相似文献   

6.
When primary cultures of hepatocytes are maintained for 2 weeks from the time of perfusion, the activity of the enzyme glucokinase decreases rapidly, so that the activity can no longer be detected after the fourth day in culture. Concomitantly, there occurs an increase in the activity of hexokinases, the low-KM isozymes, which predominate in fetal liver. We have made several modifications of the culture medium in an attempt to prevent the decrease in glucokinase activity. When the medium was supplemented with a mixture of insulin, thyroxine, glucagon, dexamethasone, testosterone, and estradiol, the activity of the enzyme in the hepatocytes was present at approximately 15% of in vivo levels after 2 weeks in culture. When this hormone mixture was present during the first 4 hrs of culture and when the hepatocytes were allowed to attach to the collagen support and were maintained thereafter in medium supplemented with fetal bovine serum, insulin, and dexamethasone, the activity of glucokinase increased after an initial decrease for 3 days and was maintained thereafter at levels comparable to those observed in vivo. This effect of the hormone mixture was found to be the result of the presence of glucagon in the mixture, since the presence of glucagon with no other hormones added, except insulin, during the attachment period produced the same pattern of increased glucokinase activity. Immunoprecipitation of glucokinase from the hepatocytes, using monospecific antibody, indicated that the increase in enzyme activity was the result of increased glucokinase enzyme protein and not an increased synthesis of the other hexokinase isozymes. These studies demonstrate the specific hormonal requirements for the maintenance of glucokinase levels in primary hepatocyte culture at those seen in vivo and lends support to the hypothesis that fetal gene expression in primary hepatocyte cultures is selectively regulated rather than being a general effect with a common regulatory mechanism.  相似文献   

7.
To evaluate the role of perinatal thyroid status in the development of pituitary-thyroid axis regulation, we administered triiodothyronine to newborn rats for the first five days postpartum to achieve hyperthyroidism, or propylthiouracil perinatally to rat dams and pups from gestational day 17 through postnatal day 5 to achieve hypothyroidism. Plasma T4, T3, and TSH levels were determined from birth through 50 days postpartum. Administration of exogenous T3 produced the expected immediate suppression of plasma T4 and TSH, with recovery toward normal values beginning within days of discontinuing the T3 regimen. Plasma T3 values were markedly elevated during the period in which T3 was being given, but subsequently became subnormal, with deficits persisting into young adulthood. With the PTU regimen, plasma T4 and T3 levels were markedly suppressed through postnatal day 10, rose over the ensuing two weeks, but nevertheless showed significant deficits into adulthood. TSH levels in the immediate neonatal period were subnormal in the PTU group, despite the marked lowering of circulating thyroid hormones; TSH then rose dramatically to levels four times normal, subsiding to control values by the end of the first month. These results suggest that a critical period exists in which regulation of pituitary-thyroid axis function is programmed. During this phase, TSH secretion can be suppressed by excess thyroid hormones, but cannot be increased by hormone deficiencies. Perhaps more importantly, perinatal thyroid status "programs" its own future reactivity, so that early hypothyroidism results in reduced T4 and T3 levels in adulthood, despite normal levels of TSH.  相似文献   

8.
Urate oxidase, an enzyme involved in purine catabolism, comprises the crystalline core of rat liver peroxisomes. An affinity-purified monospecific antibody was developed to study the expression of urate oxidase protein levels. Immunoreactive urate oxidase was not detectable in prenatal liver; however, it is present at low levels after birth until approximately day 15 (postnatal age); expression sharply increases just prior to day 20, after which the enzyme is maintained at adult levels. This pattern of expression was similar to that of another peroxisomal enzyme, catalase; these developmental increases reflect the increase in peroxisomal number. Administration of exogenous glucocorticoid hormone to 10-day-old rats resulted in a precocious rise (2.5-fold) in urate oxidase levels. Adrenalectomy at 10 days of age did not cause decreased levels in the fourth week of life. In adult animals, while exogenous glucocorticoid administration did not influence urate oxidase levels, adrenalectomy at 60 days of age decreased urate oxidase levels to 40 percent of control levels. Subsequent administration of exogenous glucocorticoid hormone restored urate oxidase to normal levels. Parallel studies of catalase levels indicate that this glucocorticoid-sensitive response is not generalized for all peroxisomal proteins. Our results suggest that peroxisomes proliferate during early postnatal development, but after this process is complete, the biogenesis of individual peroxisomal proteins may be independently regulated.  相似文献   

9.
10.
We recently reported that TRH-deficient mice showed characteristic tertiary hypothyroidism. In the present study, we investigated how this tertiary hypothyroidism occurred particularly in pre- and postnatal stages. Immunohistochemical analysis revealed a number of TSH-immunopositive cells in the TRH-/- pituitary on embryonic day 17.5 and at birth. The mutant pituitary at birth in pups born from TRH-deficient dams also showed no apparent morphological changes, indicating no requirement of either maternal or embryonic TRH for the development of pituitary thyrotrophs. In contrast, apparent decreases in number and level of staining of TSH-immunopositive cells were observed after postnatal day 10 in mutant pituitary. Similar decreases were observed in the 8-week-old mutant pituitary, while no apparent changes were observed in other pituitary hormone-producing cells, and prolonged TRH administration completely reversed this effect. Consistent with these morphological results, TRH-/- mice showed normal thyroid hormone levels at birth, but the subsequent postnatal increase was depressed, resulting in hypothyroidism. As expected, TSH content in the TRH-/- pituitary showed a marked reduction to only 40% of that in the wild type. Despite hypothyroidism in the mutant mice, both the pituitary TSHbeta and alpha mRNA levels were lower than those of the wild-type pituitary. These phenotypic changes were specific to the pituitary thyrotrophs. These findings indicated that 1) TRH is essential only for the postnatal maintenance of the normal function of pituitary thyrotrophs, including the normal feedback regulation of the TSH gene by thyroid hormone; 2) neither maternal nor embryonic TRH is required for normal development of the fetal pituitary thyrotroph; and 3) TRH-deficient mice do not exhibit hypothyroidism at birth. Moreover, reflecting its name, TRH has more critical effects on the pituitary thyrotrophs than on other pituitary hormone-producing cells.  相似文献   

11.
12.
Oligodendrocyte development and thyroid hormone.   总被引:10,自引:0,他引:10  
  相似文献   

13.
The hepatic enzyme tyrosine aminotransferase, normally expressed in very low amounts until shortly after birth, is prematurely induced in foetal rats made diabetic by the administration of streptozotocin in utero. Similarly, the enzyme is precociously induced in foetuses if the circulating insulin concentration is artificially decreased by the administration of anti-insulin serum. These observations support the proposal that the natural decrease in plasma insulin, known to occur at birth, is a major contributor to the postnatal induction of tyrosine aminotransferase.  相似文献   

14.
Rat liver glucokinase (EC 2.7.1.2) undergoes two distinct sulfhydryl-related reversible kinetic transitions. During normal assays in the presence of both substrates but without added reducing agents, the activity decays ("kappa" decay) over time to a new steady-state rate. The half-time for this decay is essentially constant at glucose levels from 2 to 200 mM and averages 6.2 +/- 2 min. Glucokinase in this kappa steady state displays an increased Km for glucose but has the same Vmax as normal, sulfhydryl-activated glucokinase. The kappa form does not itself exhibit kinetic cooperativity with glucose. In contrast, glucokinase incubated with neither glucose nor sulfhydryl reagents decays (mu decay) to a form whose Vmax is near zero. The t 1/2 for this transition is about 0.5 min at 0 or very low (0.5 mM) glucose concentrations. For both decays, incubations of enzyme with intermediate levels of reducing agents give steady-state mixtures of activated and either kappa and/or mu forms, depending on conditions during the decay. Enzyme at intermediate stages of the kappa decay displays an unchanged Vmax, intermediate (increased relative to activated enzyme) glucose S0.5 values, and diminished glucose cooperativity. In contrast, enzyme at intermediate steady-state mixtures of activated and mu forms has a normal glucose S0.5 and cooperativity but a diminished Vmax from the activated states. The enzyme at any stage of each decay may be fully reactivated by the addition of sulfhydryl reducing agents such as dithiothreitol, dithioerythritol, glutathione, or mercaptoethanol. A model is proposed to account for this complex behavior in glucokinase kinetics which proposes different enzymatic states (kappa and mu) locked in by sulfhydryl oxidation of different conformations dictated by glucose concentration. These sulfhydryl-related transitions may be important in regulation of glucokinase activity, since glucokinase is very sensitive (at least 20-fold differential activity) to concentrations of glutathione within the physiological range, perhaps allowing the normally variable glutathione levels or cytosolic redox potential to modify the rate of uptake and storage of blood glucose through control of glucokinase activity.  相似文献   

15.
Hou M  Liu Y  Zhu L  Sun B  Guo M  Burén J  Li X 《PloS one》2011,6(11):e25726
Elevated glucocorticoid (GC) activity may be involved in the development of the metabolic syndrome. Tissue GC exposure is determined by the tissue-specific GC-activating enzyme 11β-hydroxysteriod dehydrogenase type 1 (11β-HSD1) and the GC-inactivating enzyme 5α-reductase type 1 (5αR1), as well as 5β-reductase (5βR). Our aim was to study the effects of neonatal overfeeding induced by small litter rearing on the expression of GC-regulating enzymes in adipose tissue and/or liver and on obesity-related metabolic disturbances during development. Male Sprague-Dawley rat pup litters were adjusted to litter sizes of three (small litters, SL) or ten (normal litters, NL) on postnatal day 3 and then given standard chow from postnatal week 3 onward (W3). Small litter rearing induced obesity, hyperinsulinemia, and higher circulating corticosterone in adults. 11β-HSD1 expression and enzyme activity in retroperitoneal, but not in epididymal, adipose tissue increased with postnatal time and peaked at W5/W6 in both groups before declining. From W8, 11β-HSD1 expression and enzyme activity levels in retroperitoneal fat persisted at significantly higher levels in SL compared to NL rats. Hepatic 11β-HSD1 enzyme activity in SL rats was elevated from W3 to W16 compared to NL rats. Hepatic 5αR1 and 5βR expression was higher in SL compared to NL rats after weaning until W6, whereupon expression decreased in the SL rats and remained similar to that in NL rats. In conclusion, small litter rearing in rats induced peripheral tissue-specific alterations in 11β-HSD1 expression and activity and 5αR1 and 5βR expression during puberty, which could contribute to elevated tissue-specific GC exposure and aggravate the development of metabolic dysregulation in adults.  相似文献   

16.
17.
Ceruloplasmin (Cp) is a copper-dependent oxidase with roles that include the regulation of iron metabolism, participation in the acute-phase response to inflammation, and antioxidant systems. Although developmental increases in hepatic Cp gene expression and serum activity have been described, the molecular mechanisms that are responsible for this regulation are not fully understood. The studies described here explored the possible role of glucocorticoids and thyroxine (T4) in the early neonatal development of Cp by the administration of these hormones on postnatal Day 1 (24 hr after birth), and the measurement of both hepatic Cp mRNA and serum activity through postnatal Day 10. Administration of the synthetic glucocorticoid hormone, dexamethasone (2 micrograms/g body wt), resulted in an increase in Cp mRNA on Days 3-7 that was accompanied by an increase in serum Cp activity that reached statistical significance at Day 10. Exogenous T4 (2 micrograms/g body wt) significantly increased Cp mRNA 24 hr after administration. Serum Cp activity was also significantly elevated by the early neonatal administration of T4. Furthermore, gestational hypothyroidism resulted in a significant decrease in Cp activity after postnatal Day 3. These data suggest a role for thyroid hormone and possibly glucocorticoids in the normal developmental regulation of Cp.  相似文献   

18.
Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.  相似文献   

19.
Abstract: Snell dwarf mice (dw) showed a lower CNPase activity (59% of the normal controls) only in the cerebrum among different parts of the CNS, and a strikingly reduced level of spontaneous locomotion activity with an indistinct diurnal periodicity in a 24-h record at 40 days of age. Daily administration of bGH and T4 to the dwarfs during the first 40 days of postnatal life restored CNPase activity to the level of the normal controls, and was accompanied by normalization of the pattern of spontaneous locomotion activity. Daily administration of bGH alone also restored CNPase activity and spontaneous locomotion, but to a lesser extent. The daily administration of thyroid stimulating hormone (TSH) alone, however, failed to restore CNPase activity, in spite of the fact that the thyroid glands of the TSH-treated dwarfs were indistinguishable from the normal controls in organization and appearance. These results indicate that the restoration of both the retarded myelinogenesis and abnormal behavior of the Snell dwarf mice might essentially depend upon GH levels and the synergistic effects of T4.  相似文献   

20.
The activity of rat thyroid iodide peroxidase fell to 8% of the normal value 48 hours after hypophysectomy. Rats given injections of thyroid stimulating hormone manifested an enzyme activity indistinguishable from that of the sham-operated animals. Cycloheximide prevented the thyroid stimulating hormone-induced restoration of the enzyme activity. The incorporation of 14C-leucine into the thyroid gland decreased gradually and reached two thirds of the sham-operated group by 48 hours after hypophysectomy. Thyroid stimulating hormone administration prevented this decrease, as observed for iodide peroxidase activity. Thyroidal RNA contents decreased also in hypophysectomized rats, thyroid stimulating hormone treatment prevented the reduction of RNA contents and no significant change was observed in thyroidal DNA contents. These data are consistent with the idea that protein biosynthesis is involved in thyroid stimulating hormone regulation of thyroidal iodide peroxidase and that the life span of the peroxidase is less than 48 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号