首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban reserves provide a major opportunity for conservation of indigenous biodiversity in the heavily urbanised landscape of Waitakere City (Auckland), New Zealand. However, there is little documented information on what indigenous fauna survives in these reserves. Beetle (Coleoptera) communities associated with two small, isolated urban reserves and two sites in a larger forest area within the Waitakere Ranges were sampled using pitfall traps and analysed. A total of 887 beetles, from 23 families and 89 recognisable taxonomic units were caught. The urban reserves had a marked reduction in species richness and abundance of beetles compared with the sites within the larger forest areas. Various environmental factors influencing the distribution of beetles across the sites were investigated. The most important factors were size of fragment, local forest cover and soil moisture. Common species (>5 specimens in the total dataset) found in the Waitakere Ranges and small urban reserves, were either endemic or indigenous to New Zealand. Therefore, even though these reserves may be isolated from a larger, more continuous forest tract, they have considerable potential as reservoirs of beetle diversity in highly modified landscapes and the contribution of urban reserves to the local sustainability of beetle assemblages emphasises the importance of maintaining green areas in and around cities.  相似文献   

2.
Abstract Recent studies have both shown and predicted that global climate change will have a substantial influence on biodiversity. This is true especially of a global biodiversity hotspot, the Cape Floristic Region. Although the effects of predicted changes have been widely assessed for plants, little is known about how insect diversity in the region might be affected. In particular, patterns in and the correlates of diversity in the region are poorly understood, and therefore the likely affects of a changing abiotic environment on this significant group of organisms are not clear. Therefore, we investigate patterns in, and correlates of, epigaeic beetle (Tenebrionidae and Carabidae) diversity in one of the most climate change‐sensitive areas in the Cape Floristic Region, the Cederberg. In particular, we determine whether epigaeic beetle assemblage structure differs between the main vegetation types in the Cederberg (Strandveld, Mountain Fynbos and Succulent Karoo), how restricted these beetles are to specific vegetation types, and which environmental variables might be associated with site‐related differences in beetle richness and abundance. Sampling was undertaken during October 2002 and 2003 across an altitudinal gradient ranging from sea level (Lambert's Bay) to approximately 2000 m above sea level (Sneeukop, Cederberg) and down again to 500 m above sea level (Wupperthal) using pitfall traps. The environmental correlates of abundance and species density in the epigaeic beetles were similar to those identified previously for ants across the transect, with both taxa being positively related to several temperature variables. Several species showed habitat specificity and fidelity, and clear distinctions existed between the vegetation types across the transect. A larger proportion of the variance in tenebrionid species density was explained by environmental variables and spatial factors than for carabids. The most likely explanation for this difference is that the correlates might well reflect collinear historical processes, rather than a causal relationship between contemporary environmental variables and species density. If this is the case, it suggests that caution should be exercised when interpreting environmental correlates of species density, and making climate change predictions based on these correlates.  相似文献   

3.
The interaction between land use and climate change is expected to strongly affect species distributions along high elevation landscapes. We aimed to test the effect of climatic variables on community metrics among five types of land use in a high elevation landscape. We described dung beetle spatial and temporal taxonomic and functional diversity patterns, and partitioned β‐diversity into turnover and nestedness components. The interaction between land use and daily period of activity mostly drives abundance, functional richness and functional diversity, but not dung beetle species richness. Unlike Neotropical lowlands, species richness and abundance in open environments are similar to those existing in forests. Temperature is an important predictor of abundance and functional divergence. There is a higher spatial component of the taxonomic β‐diversity, which is highly driven by species turnover. The temporal component of the taxonomic β‐diversity was strongly driven by nestedness, where night assemblages are sub‐sets, although not entirely, of diurnal assemblages. For functional diversity, the temporal β‐diversity was much higher than the spatial β‐diversity, but both were similarly represented by functional group turnover and nestedness. The composition of nocturnal and diurnal assemblages is clearly different, even more than the differences observed between habitats. However, taxonomic turnover is the dominant force between sampling sites while nestedness dominates the daily pattern. This means that forest habitats are unlikely to act as shelters for grassland species under a scenario of rising temperature.  相似文献   

4.
Beetle assemblages in ponds: effects of habitat and site age   总被引:11,自引:1,他引:10  
  • 1 Water beetle assemblages were sampled in each of 18 freshwater ponds, including 11 recently constructed sites designed to provide mitigation for wetlands destruction elsewhere, and seven older reference sites. There were three objectives: (a) to relate taxon richness and biomass of the beetles to the same properties of the wider aquatic invertebrate community, (b) to evaluate changes in beetle assemblage structure over time, and (c) to determine habitat effects on taxonomic composition, mean body size and trophic guild structure of the beetle assemblage.
  • 2 Forty‐seven beetle genera were identified, representing 77 species. The beetles represented an average of 21.5% of total generic richness, but only 3.7% of total wet biomass of the wider invertebrate community.
  • 3 Of all variables evaluated using canonical correspondence analysis (CCA), site age had the greatest influence on the beetle assemblage. Predatory dytiscids were early colonists at younger sites, while herbivorous curculionids and chrysomelids associated with particular types of vegetation typically occurred in older ponds. Mitigation ponds and reference ponds supported similar numbers of species. Reference sites, however, harboured substantially more unique species found at only a single site within the study area.
  • 4 The presence of fish was also strongly related to beetle assemblage structure. Ponds with few or no fish contained about 3‐fold higher biomass and 3‐fold greater mean wet weight per individual compared to ponds with substantial fish assemblages.
  • 5 Beetle assemblage composition varied among sites and sampling years, but beetle biomass, richness and species composition may be useful tools in evaluating the success of wetland mitigation efforts.
  相似文献   

5.
The diversity and composition of drift invertebrate assemblages were evaluated along a longitudinal gradient of an altitudinal stream in southeastern Brazil. The main goal of this study was to evaluate the influence of seasonality, stream order, and some abiotic factors on invertebrate drift and the use of drifting invertebrate assemblages to assess aquatic invertebrate diversity. Drift samples were collected over a 24 h period using nets (open area of 0.08 m2; mesh 0.250 mm), partially submerged (60%) in the water column. Taxonomic richness, Pielou evenness (J), Shannon–Wiener diversity (H), and total density of drift invertebrate assemblages were used in unpaired t-tests, Kruskal–Wallis and stepwise multiple regression analysis. The results showed a high taxonomic richness of aquatic invertebrates, with 91 taxa found. Chironomidae and Ephemeroptera represented together c. 80% of the total density of drift organisms. The drift approach allowed the collection of new and rare taxa, besides the knowledge of pupae stage of several chironomid genera. Significant differences in the taxonomic richness and diversity of drift invertebrate assemblages were found between the rainy and dry periods, indicating a significant influence of seasonality. An increase in water flow and electrical conductivity were associated with the increase in the taxonomic richness and diversity in the rainy period. No significant differences were found among the other abiotic variables among the stream orders.  相似文献   

6.
Fossil pollen as a record of past biodiversity   总被引:7,自引:0,他引:7  
Quaternary pollen records may contribute uniquely to the understanding of present plant diversity. Pollen assemblages can reflect diversity at community and landscape scales but the time resolution of most studies does not match that of modern ecological studies. Because of the complicating effects of differential pollen productivity and dispersal, pollen records do not directly reflect equitability aspects of vegetation diversity. Vegetation diversity indices other than S (the total number of taxa) are therefore not appropriate for pollen assemblages. As a measure of the species richness palynological richness is biased by the lack of taxonomic precision, by a possible interference on pollen dispersal from vegetation structure and by pollen representation. The nonlinear relationship between species richness and pollen-taxa richness may be used in attempts to estimate past floristic richness from fossil pollen assemblages. Using a hypothetical example the strong effect of cover shifts in the vegetation affecting taxa with different representation (Rrel) values on observed palynological richness is demonstrated. It is suggested that estimates of relative pollen productivity should be used to guide the pollen sum on which pollen-type richness is estimated by rarefaction techniques and this approach is illustrated using a paired site study of late Holocene diversity dynamics. The need for a modern training set relating pollen-type richness to species richness, pollen productivity and vegetation structure is emphasized.  相似文献   

7.
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research.  相似文献   

8.
Despite high diversity levels of beetles inhabiting dung and carcasses, very few studies have attempted a comparative assessment of copro-necrophile beetle communities in relation to spatio-temporal variations, particularly in the tropics where the vast majority of beetles occur. We compared beetle assemblages attracted to pads of cattle dung and rat carcasses in four contrasting vegetation types associated with oak forest. In a total of 52 transects including 3,952 dung pad days and 2,600 carcass-trap days we recorded 14,989 beetles representing 406 species and 33 families. Necrophiles (323 species and 33 families) were considerably more diverse than coprophiles (172 species and 16 families). Staphylinidae were taxonomically and numerically dominant, comprising 45% of species and 66% of individuals, respectively. Species estimators (Chao 2) suggested that the observed beetle richness represented 68% of coprophile and 56% of necrophile species richness, with rare species constituting the majority of the species: singletons and doubletons?=?89 species (52%) of coprophiles and 166 species (51%) of necrophiles. Beetle assemblages varied in diversity and composition as regards to vegetation type and season: samples from less disturbed vegetation types (continuous oak forest and ravines) had higher beetle diversity, and a strong seasonality effect was recorded for necrophiles, but not for coprophiles. In addition, an indicator value analysis (IndVal), showed that relatively preserved vegetation types recorded more indicator species as compared to disturbed sites. Our studies clearly demonstrates that the least fragmented oak forest and ravine are the most valuable areas for necrophile and coprophile beetles in Neotropical Mexico, especially for specialist beetles.  相似文献   

9.
Carrion is an ephemeral and nutrient-rich resource that attracts a diverse array of arthropods as it decomposes. Carrion-associated mites often disperse between animal carcasses using phoresy, the transport of one species by another. Yet few studies have contrasted the dynamics of mite assemblages with other insect taxa present at carrion. We examined and compared the changes in abundance, species richness and composition of mite and beetle assemblages sampled at kangaroo carcasses in a grassy eucalypt woodland at four different times over a 6-month period. We found that the majority of mites were phoretic, with the mesostigmatid genera Uroseius (Uropodidae), Macrocheles (Macrochelidae) and Parasitus (Parasitidae) the most abundant taxa (excluding astigmatid mites). Abundance and richness patterns of mites and beetles were very different, with mites reaching peak abundance and richness at weeks 6 and 12, and beetles at weeks 1 and 6. Both mites and beetles showed clear successional patterns via changes in species presence and relative abundance. Our study shows that mesostigmatid mite assemblages have a delay in peak abundance and richness relative to beetle assemblages. This suggests that differences in dispersal and reproductive traits of arthropods may contribute to the contrasting diversity dynamics of carrion arthropod communities, and further highlights the role of carrion as a driver of diversity and heterogeneity in ecosystems.  相似文献   

10.
Small urban forest reserves in New Zealand have been shown to have value in conserving indigenous beetle diversity. However there is little information available on the ability of non‐native vegetation areas such as tree privet to support indigenous beetle assemblages. To investigate this for one site, ground‐living beetles were collected using pitfall traps over a year at a small urban forest of the invasive tree Ligustrum lucidum (tree privet) in Auckland, New Zealand. A total of 815 beetles were found, from 20 families and 42 relative taxonomic units. Using monthly data, there was no correlation between soil moisture and diversity index (P = 0.805) or species richness (P = 0.375). These results raise the question of whether urban patches of non‐native tree privet may have potential as reservoirs of beetle diversity, if only until they are replaced with native vegetation.  相似文献   

11.
Altitudinal changes of composition and richness of montane plant assemblages are complex, depending on the taxonomic group and gradient conditions, with different factors involved that are directly altitude-dependent (e.g., temperatures, air pressure) and altitude-independent (e.g., precipitation, cloud cover, area). In order to assess the relative impacts of temperature, precipitation, air humidity, and area of altitudinal belts on plant diversity, we analyzed diversity patterns of five species-rich groups, mostly herbaceous plants, in 74 forest plots along three climatically contrasting elevational transects from humid tropical lowland vegetation up to cloud forests at Los Tuxtlas, Mexico. We recorded 278 plant species, with ferns being the most species-rich group followed by orchids, bromeliads, aroids, and piperoids. The most striking results were the contrasting patterns and model results for terrestrial and epiphytic taxa. Whereas the richness of all terrestrial species taken together did not change significantly with elevation, vascular epiphytes showed increasing species numbers with altitude. However, a number of individual terrestrial taxa showed also significant elevation-related changes: aroids showed a marked decline with hight, orchids and piperoids increased, and ferns displayed a hump-shaped pattern with highest richness in mid-altitudes. Among the epiphytes, aroids declined while most other groups increased with altitude. This distinction is relevant for projections of responses of plant communities to climate change, which will lead to increased temperatures and to changing precipitation and cloud condensation regimes and thus will likely affect terrestrial and epiphytic species in different ways.  相似文献   

12.
The relationship between community diversity and invasion resistance in a grassland was examined using experimental plant assemblages that varied in species richness and composition. The assemblages were weeded for three seasons to remove unsown species and we used the number of weeded seedlings, their total biomass and the number of species removed as indicators of community resistance and susceptibility to invasion. In general, we found a positive relationship between invasion resistance and increasing community diversity. Similar patterns of establishment were observed at the end of the fourth field season after several months without weeding. Increased invasion resistance with higher diversity appears to come through reduced levels of several above- and belowground resources, although these did not fully explain the effects of species richness in the studys analyses. Experimental increases and reductions of litter biomass within the studys experimental plant assemblages did not modify these patterns significantly. A review of comparable studies of invasion across directly manipulated diversity gradients revealed similar patterns. Positive effects of species diversity on invasion resistance were found in experimental manipulations of plant diversity conducted in the field and in the glasshouse, from studies with aquatic microcosms and in a marine system. Although some exceptions to this pattern were found in both terrestrial plant systems and aquatic microcosms, it was concluded that in biodiversity manipulation experiments more diverse communities are generally more resistant to invasion.  相似文献   

13.
Rapid assessment of butterfly diversity in a montane landscape   总被引:2,自引:0,他引:2  
We present the results of a rapid assessment of butterfly diversity in the 754 ha Beaver Meadows study area in Rocky Mountain National Park, Larimer County, Colorado. We measured butterfly species richness and relative abundance as part of a landscape-scale investigation of diversity patterns involving several groups of organisms. A stratified random sampling design was used to include replication in both rare and common vegetation types. We recorded 49 butterfly species from the twenty-four 0.1 ha plots that were sampled four times during June, July, and August 1996. Butterfly species richness, diversity, and uniqueness were highest in quaking aspen (Populus tremuloides Michaux) groves and wet meadows, which occupy only a small proportion of the studied landscape. This result supports the suggestion that aspen areas represent hotspots of biological diversity in this montane landscape. Patterns of butterfly species richness were positively correlated with total vascular plant species richness (r = 0.69; P < 0.001), and native plant species richness (r = 0.64; P < 0.001). However, exotic plant species richness (r = 0.70; P < 0.001) and the cover of exotic plant species (r = 0.70; P < 0.001) were the best predictors of butterfly species richness.  相似文献   

14.
15.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

16.
Little is known about the diversity of tropical animal communities in recently fire‐affected environments. Here we assessed species richness, evenness, and community similarity of butterflies and odonates in landscapes located in unburned isolates and burned areas in a habitat mosaic that was severely affected by the 1997/98 ENSO (El Niño Southern Oscillation) event in east Kalimantan, Indonesian Borneo. In addition related community similarity to variation in geographic distance between sampling sites and the habitat/vegetation structure Species richness and evenness differed significantly among landscapes but there was no congruence between both taxa. The species richness of butterflies was, for example, highest in sites located in a very large unburned isolate whereas odonate species richness was highest in sites located in a small unburned isolate and once‐burned forest. We also found substantial variation in the habitat/vegetation structure among landscapes but this was mainly due to variation between unburned and burned landscapes and variation among burned landscapes. Both distance and environment (habitat/vegetation) contributed substantially to explaining variation in the community similarity (beta diversity) of both taxa. The contribution of the environment was, however, mainly due to variation between unburned and burned landscapes, which contained very different assemblages of both taxa. Sites located in the burned forest contained assemblages that were intermediate between assemblages from sites in unburned forest and sites from a highly degraded slash‐and‐burn area indicating that the burned forest was probably recolonised by species from these disparate environments. We, furthermore, note that in contrast to species richness (alpha diversity) the patterns of community similarity (beta diversity) were highly congruent between both taxa. These results indicate that community‐wide multivariate measures of beta diversity are more consistent among taxa and more reliable indicators of disturbance, such as ENSO‐induced burning, than univariate measures.  相似文献   

17.

Background

Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.

Methodology/Principal Findings

Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284–289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469–481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.

Conclusions/Significance

Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a valuable tool for evaluating biodiversity of hyperdiverse insect communities, especially when exact taxonomic identifications are missing.  相似文献   

18.
The occurrence and habitat associations of the majority of invertebrate groups in boreal forests are poorly known, even though these groups represent perhaps over 99% of the animal species diversity in the forests. We studied the beetle (Coleoptera) fauna of four forest site types in northern Finland: in spruce mires, herb rich, mesic and sub-xeric forests. We sampled beetles in 32 study sites with five window and five pitfall traps in each. We describe the species abundance and diversity patterns within and among forest types and relate these patterns to structural components of the forests. The volume of decaying wood varied from 14 to 93 m3 ha−1 among sampling sites. The total beetle catch consisted of 100 333 individuals and 435 species. The beetle species richness did not vary according to site fertility but the number of specimens increased with increasing fertility in heath forest sites. The richness of beetle species correlated only weakly with any of the stand structure characteristics at the stand level. Nevertheless, the detrended correspondence analysis (DCA) indicated that different beetle assemblages are characteristic of different forest types. The high level of beta-diversity in beetles among forest types indicates that focusing exclusively on, for example, key-biotopes (presumed biodiversity hotspots) when selecting areas to be set aside would result in a situation where a large proportion of species, even of the rare and threatened ones, is not included in this network of protected areas. This suggests that the complementary set of different forest types may be the best general strategy to maintain the overall beetle species diversity in boreal forests.  相似文献   

19.
Taxonomic diversity of vascular plants (ferns, gymnosperms and angiosperms) was compared between eastern Asia and North America. Eastern Asia has significantly higher species richness in all three classes but the difference was greatest in ferns and least in angiosperms. Differences in taxonomic treatments between the two continents are not likely contributors to these patterns. The relationship of regional to global species richness across the three plant classes suggested that diversity patterns were relatively homogeneous at three taxonomic levels. Thus, differences in species richness are established at the family level and are therefore relatively old. The previously noted fact that eastern Asia has a higher proportion of primitive taxa was shown by analyses both among and within plant classes. Diversity patterns across three taxonomic levels (i.e. family, genus and species) of the three classes may reflect the relative historical positions of the two continents (following continental drift) to the centre(s) of their origin, neighbouring land masses, differential speciation/extinction rates, and switches in dominance levels associated with climate change (including glaciation), as well as reproductive/dispersal mechanisms of the three plant classes.  相似文献   

20.
Salt marshes are wet environments at the transition between land and sea, which are inhabited by species that are adapted to stressing environmental factors, such as frequent tidal inundations and highly variable salinity. The rapid and global disappearance of these ecosystems results in the loss of those species that here have their typical habitat. In the lagoon of Venice, a programme for the protection of the surviving salt marshes was initiated by building dredge islands in the framework of more comprehensive restoration work. The ecological characterisation of these man-made habitats was studied through analysing the beetle fauna established on six dredge islands with different topographical traits. Beetle assemblages were evaluated by analysing species richness and abundance. The observed species were arranged in ecological groups and within sub-habitats, delimited according to the zonation of halophytes and ruderal vegetation. Both the composition and distribution of the beetle assemblages were strongly affected by the soil elevation, which determines the salinity gradient and the flooding rate. Hygrophilous and halobious taxa were dominant; however, many generalist taxa were present on some higher islands characterised by areas with a height greater than 60 cm above the mean sea level. Notably, these rarely submerged soils hosted some uncommon halophilous species, as well as thermophilous taxa typical of Mediterranean habitats that were not present on the surrounding mainland. Overall, although the dredge islands possessed some topographical traits that differed significantly from those of the natural salt marsh, they proved to host the biotic communities typical of these latter habitats, as well as other saline soil specialists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号