首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chronological relationships between stolon formation, stolon tip swelling, tuber initiation, flowering, senescence, growth and resorption of tubers were studied under field conditions in a diploid population of potato with 238 genotypes, the parental clones and seven tetraploid cultivars. Timing of tuber initiation was not closely related to the timing of stolon formation, flowering and duration of the plant cycle. Tuber initiation very often preceded stolon branching. The number and size distribution of tubers were largely influenced by the degree of stolon branching, the length of the stolon swelling period and tuber resorption. The peak production of stolons and swollen stolon tips largely took place within the flowering period, although in most genotypes, some stolon tip swelling took place until the end of the plant cycle. More information on the general temporal relationships between events related to tuber formation and plant development will contribute to a better understanding of the physiological and genetic basis of the processes leading to the production of harvestable tubers.  相似文献   

2.
Previously non-described in literature abnormalities of phragmoplast formation in pollen mother cells of cereal haploids and allohaploids are reported. These abnormal phenotypes reveal and illustrate some steps of the process of phragmoplast formation in dividing plant cell, indicate a special regulation of their start, and confirm the information about the process obtained from other sources. The cytokinetic stage in plant cytoskeleton cycle is discussed.  相似文献   

3.
The formation and development of belowground organs is difficult to study. X‐ray computed tomography (CT) provides the possibility to analyse and interpret subtle volumetric changes of belowground organs such as tubers, storage roots and nodules. Here, we report on the establishment of a method based on a voxel dimension of 240 μm and precision (standard deviation) of 30 μL that allows interpreting growth differences among potato tubers happening within 3 h. Plants were not stressed by the application of X‐ray radiation, which was shown both by morphological comparison with control plants and by analysis of lipid peroxidation as a measure of oxidative stress. Diel (24 h) tuber growth fluctuations of three potato genotypes were monitored in soil‐filled pots of 10 L. In contrast to the results from previous reports, most tubers grew at similar rates during day and night. Tuber growth was not related to the developmental stage of plants and tubers. Pronounced differences were observed between average growth rates in different tubers within a plant. These results are discussed in the context of restrictions of past methods to study tuber growth and in the context of their potential for the characterization of the formation and development of other belowground plant organs.  相似文献   

4.
5.
Summary The objective of this study was to separate and determine effects on the field performance of transgenic potatoes that originate from the tissue culture process of transformation and from the genes inserted. The constructs introduced contained the reporter gene for betaglucuronidase (GUS) under the control of the patatin promoter (four different constructs) and the neomycin phosphotransferase gene under the control of the nopaline synthase promoter. Both genes might be expected to have a neutral effect on plant phenotype. The field performance of transgenic plants (70 independent transformants) was compared with non-transgenic plants regenerated from tuber discs by adventitious shoot formation and from shoot cultures established from tuber nodal cuttings. Plants from all three treatments were grown in a field trial from previously field-grown tubers, and plant performance was measured in terms of plant height at flowering, weight of tubers, number of tubers, weight of large tubers and number of large tubers. There was evidence of somaclonal variation among the transgenic plants; mean values for all characters were significantly lower and variances generally higher than from plants derived from nodal shoot cultures. A similar change in means and variances was observed for the non-transgenic tuber-disc regenerants when compared with shoot culture plants. Plant height, tuber weight and tuber number were, however, significantly lower in transgenic plants than in tuber-disc regenerants, suggesting an effect on plant performance either of the tissue culture process used for transformation or of the genes inserted. There were significant differences between constructs for all five plant characters. The construct with the smallest segment of patatin promoter and the lowest level of tuber specificity for GUS expression had the lowest values for all five characters. It is proposed that the nature of GUS expression is influencing plant performance. There was no indication that the NPTII gene, used widely in plant transformation, has any substantial effect on plant performance in the field.  相似文献   

6.
7.
The effects of the polygalacturonase-inhibiting protein (PGIP) on the rate of oligouronide formation were studied in a model system containing polygalacturonic acid and polygalacturonase (PG) from the culture medium of phytopathogenic fungi. PGIP preparations were prepared from stored potato tubers and sprouts and also from apple fruits. The PGIP effects on oligouronide synthesis depended markedly on the physiological state of the source plant. Apple cultivars differing in their earliness differed in PGIP effects as well. The PGIP from potato tubers, which were in deep dormancy, suppressed oligouronide formation. The inhibitory PGIP action was decreased after dormancy release and tuber sprouting, which resulted in the oligouronide accumulation. The effects of PGIP from apple fruits on the oligouronide synthesis in the system containing PG from various phytopathogenic fungi were not correlated with tissue damage induced by these fungi. The PGIP effects on oligouronide formation are evident; however, their role in plant-cell processes related to the pectin compound conversions and plant resistance to diseases remains to be elucidated.  相似文献   

8.

Background  

Patatins encoded by a multi-gene family are one of the major storage glycoproteins in potato tubers. Potato tubers have recently emerged as bioreactors for the production of human therapeutic glycoproteins (vaccines). Increasing the yield of recombinant proteins, targeting the produced proteins to specific cellular compartments, and diminishing expensive protein purification steps are important research goals in plant biotechnology. In the present study, potato patatins were eliminated almost completely via RNA interference (RNAi) technology to develop potato tubers as a more efficient protein expression system. The gene silencing effect of patatins in the transgenic potato plants was examined at individual isoform levels.  相似文献   

9.
Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose – and, by implication, flux through hexokinase – in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose‐independent mechanism.  相似文献   

10.
11.
The effects of ethylene on the elongation of radish hypocotyls and on dry matter partitioning between tubers and shoots were analysed in order to gain insight into the possible role of ethylene in the regulation of tuberization. Treatment of very young seedlings with ethylene results in heavier tubers (Vreugdenhil et al. 1984). Here we report that addition of ethylene or ethephon two days after germination inhibited the elongation of the hypocotyl; trapping of endogenously produced ethylene had a stimulative effect on elongation. Ethephon, sprayed at a later stage, changed the partitioning of assimilates between tubers and shoots, resulting in lower tuber weights. It is concluded that ethylene had a dual effect on tuberization in radish: at a very early stage of development it inhibited elongation of the hypocotyl, resulting in earlier tuber formation and heavier tubers. At a later stage, it had a negative effect on tuber weight by changing dry matter partitioning.  相似文献   

12.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

13.
The effects of the plant growth retardant tetcyclacis on in vitro tuber formation in potatoes was studied, using two different approaches: 1. tuber formation in various lines that did not or hardly form tubers under control conditions, and 2. tuber formation by the variety Bintje, which readily forms tubers. The ABA-deficient (droopy) lines of S. phureja hardly formed tubers without the addition of tetcyclacis. In the presence of this growth retardant tuberization was nearly 100%, within three weeks of in vitro culture, even in the absence of cytokinin. A series of somatic hybrids between S. tuberosum and S. brevidens, that did not form tubers in field and pot experiments, were tested. They all formed tubers in vitro in the presence of tetcyclacis. Stoloniferous shoots formed on single-node cuttings from in vitro grown Solanum tuberosum var Bintje plantlets were transferred to media containing a high level of sucrose. In the presence of tetcyclacis, tuber formation started after 4 days, reaching a maximum level of 80% at day 7. Tubers formed in the presence of tetcyclacis, accumulated starch and expressed several tuber-specific genes. These effects were fully antagonized by gibberellic acid. It is concluded that the growth retardant tetcyclacis is a potent tool in the study of tuber formation in potatoes.Abbreviations ABA abscisic acid - BAP benzylaminopurine - GA3 gibberellic acid - STS silver thiosulphate - TET tetcyclacis  相似文献   

14.
Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.  相似文献   

15.
Manipulation of starch biosynthesis/degradation and formation of novel molecules in storage organs of plants through genetic engineering is an attractive but technically challenging goal. We report here, for the first time, that starch was degraded and glucose and fructose were produced directly when crushed potato tubers expressing a starch degrading bifunctional gene were heated for 45 minutes at 65 degrees C. To achieve this, we have constructed a fusion gene encoding the thermostable enzymes: alpha-amylase (Bacillus stearothermophilus) and glucose isomerase (Thermus thermophilus). The chimeric gene was placed under the control of the granule-bound-starch synthase promoter. This enzymatic complex produced in transgenic tubers was only active at high temperature (65 degrees C). More than 100 independent transgenic potato plants were regenerated. Molecular analyses confirmed the stable integration of the chimeric gene into the potato genome. The biochemical analyses performed on young and old tubers after high-temperature treatment (65 degrees C) revealed an increase in the formation rate of fructose and glucose by a factor of 16.4 and 5. 7, respectively, in the transgenic tubers as compared to untransformed control tubers. No adverse discernible effect on plant development and metabolism including tuber formation and starch accumulation was observed in the transgenic plants before heat treatment. Our results demonstrate that it is possible to replace starch degradation using microbial enzymes via a system where the enzymes are produced directly in the plants, but active only at high temperature, thus offering novel and viable strategies for starch-processing industries.  相似文献   

16.
When young radish ( Raphanus sativus L. cv, Novired RS) plants were exposed to low levels of ethylene, the fresh weight and dry weight of the tubers significantly increased. This was mainly because ethylene reduced the percentage of plants that hardly or not at all formed a tuber. Decaptated seedling cultured in vitro, were supplied with several plant growth regulators in order to determine a possible correlation between the induction of radial growth and the biosynthesis of ethylene in the hypocotyl. Indole-3-acetic acid, or in combination with 6-benzylaminopurine, induced growth of the hypocotyl and markedly enhanced ethylene biosynthesis. However, the application of a precursor and an inhibitor of ethylene biosynthesis revealed that there is no direct causal relationship between radial growth and ethylene evolution. It is suggested that ethylene favoured tuber growth in intact plants by changing the partitioning of assimilates in the plant, rather than by the induction of cambial activity.  相似文献   

17.
N. Okagami  Y. Esashi  M. Nagao 《Planta》1977,136(1):1-6
Gibberellic-acid (GA3) treatment, when applied within a period ranging from the start of short-day (SD) treatment until about 10 SD, GA3 strongly inhibited formation of aerial tubers in response to SD and brought about sprouting of developing aerial tubers. In contrast, when applied after about 10 SD or more, GA3 hastened the completion of the dormant state in the tubers and prolonged their dormancy. The dormancy-promoting effect of GA3 on detached tubers increased with their degree of maturation. Application of growth retardants N-dimethylaminosuccinamic acid (B-9), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride (AMO-1618) and 2-chloroethyltrimethylammonium chloride (CCC) to the cuttings delayed the onset of dormancy in the aerial tuber. When the retardants were applied to detached aerial tubers, however, such a delay of dormancy was not observed, and GA3 application did not inhibit sprouting in aerial tubers detached from CCC-treated cuttings.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short day(s) - LD long day(s) - SDP short-day plant - LDP long-day plant - CCC 2-chloroethyltrimethylammonium chloride - B-9 N-dimethylaminosuccinamic acid - AMO-1618 2-isopropyl-4-dimethyl-amino-5-methylphenyl-1-piperidine carboxylate methyl chloride  相似文献   

18.
Growth ring formation in the starch granules of potato tubers   总被引:1,自引:0,他引:1       下载免费PDF全文
Pilling E  Smith AM 《Plant physiology》2003,132(1):365-371
Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved.  相似文献   

19.
Tuber formation and carbohydrate metabolism in potatoes were studied using transgenic potato plants carrying the Agrobacterium tumefaciens ipt gene, involved in cytokinin biosynthesis. Three independent transformants, viz. clones 1, 11 and 13, whose cytokinin and auxin content had previously been shown to be different from each other and from the wild-type, were analysed in vitro. Clones 11 and 13 showed a higher ability to form stolons and tubers, as evident from: (1) stolon development in whole plants grown under non-inductive conditions, (2) total number and weight of tubers formed by cuttings of this clone in darkness, (3) tubers appeared earlier than tubers of wild-type plants and at a lower sucrose concentration in the medium. Clone 1 did not form stolons or tubers under any conditions tested, but rather formed short shoots. A series of metabolic changes, known to be characteristic for tubers, were analysed in leaves, stems and developing buds. It was found that the short type of shoots, formed by clone 1, had metabolic characteristics very similar to tubers formed in wild-type or clones 11 and 13, including glucose, fructose, sucrose, and starch levels, and activities of invertase, sucrose synthase and fructokinase. It is concluded that the regulation of the stolon swelling and of carbohydrate metabolism, normally occurring simultaneously, can be uncoupled, and are thus, at least partly independent phenomena. The present data obtained with a high-cytokinin line indicate that cytokinins (probably in concert with auxins) might be mainly involved in the regulation of tuber morphology.  相似文献   

20.
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号