首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nomenclature of the ARID family of DNA-binding proteins   总被引:4,自引:0,他引:4  
The ARID is an ancient DNA-binding domain that is conserved throughout the evolution of higher eukaryotes. The ARID consensus sequence spans about 100 amino acid residues, and structural studies identify the major groove contact site as a modified helix-turn-helix motif. ARID-containing proteins exhibit a range of cellular functions, including participation in chromatin remodeling, and regulation of gene expression during cell growth, differentiation, and development. A subset of ARID family proteins binds DNA specifically at AT-rich sites; the remainder bind DNA nonspecifically. Orthologs to each of the seven distinct subfamilies of mammalian ARID-containing proteins are found in insect genomes, indicating the minimum age for the organization of these higher metazoan subfamilies. Many of these ancestral genes were duplicated and fixed over time to yield the 15 ARID-containing genes that are found in the human, mouse, and dog genomes. This paper describes a nomenclature, recommended by the Mouse Genomic Nomenclature Committee (MGNC) and accepted by the Human Genome Organization (HUGO) Gene Nomenclature Committee, for these mammalian ARID-containing genes that reflects this evolutionary history.  相似文献   

2.
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity.  相似文献   

3.
4.
SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that are highly conserved from yeast to human. From yeast to human the complexes contain a subunit with an ARID (A-T-rich interaction domain) DNA-binding domain. In yeast this subunit is SWI1 and in human there are two closely related alternative subunits, p270 and ARID1B. We describe here a comparison of the DNA-binding properties of the yeast and human SWI/SNF ARID-containing subunits. We have determined that SWI1 is an unusual member of the ARID family in both its ARID sequence and in the fact that its DNA-binding affinity is weaker than that of other ARID family members, including its human counterparts, p270 and ARID1B. Sequence analysis and substitution mutagenesis reveals that the weak DNA-binding affinity of the SWI1 ARID is an intrinsic feature of its sequence, arising from specific variations in the major groove interaction site. In addition, this work confirms the finding that p270 binds DNA without regard to sequence specificity, excluding the possibility that the intrinsic role of the ARID is to recruit SWI/SNF complexes to specific promoter sequences. These results emphasize that care must be taken when comparing yeast and higher eukaryotic SWI/SNF complexes in terms of DNA-binding mechanisms.  相似文献   

5.
The ARID family of DNA binding proteins was first recognized approximately 5 years ago. The founding members, murine Bright and Drosophila dead ringer (Dri), were independently cloned on the basis of their ability to bind to AT-rich DNA sequences, although neither cDNA encoded a recognizable DNA binding domain. Mapping of the respective binding activities revealed a shared but previously unrecognized DNA binding domain, the consensus sequence of which extends across approximately 100 amino acids. This novel DNA binding domain was designated AT-rich interactive domain (ARID), based on the behavior of Bright and Dri. The consensus sequence occurs in 13 distinct human proteins and in proteins from all sequenced eukaryotic organisms. The majority of ARID-containing proteins were not cloned in the context of DNA binding activity, however, and their features as DNA binding proteins are only beginning to be investigated. The ARID region itself shows more diversity in structure and function than the highly conserved consensus sequence suggests. The basic structure appears to be a series of six alpha-helices separated by beta-strands, loops, or turns, but the structured region may extend to an additional helix at either or both ends of the basic six. It has also become apparent that the DNA binding activity of ARID-containing proteins is not necessarily sequence specific. What is consistent is the evidence that family members play vital roles in the regulation of development and/or tissue-specific gene expression. Inappropriate expression of ARID proteins is also increasingly implicated in human tumorigenesis. This review summarizes current knowledge about the structure and function of ARID family members, with a particular focus on the human proteins.  相似文献   

6.
7.
JARID1B, a member of the JmjC demethylase family, has a crucial role in H3K4me3 demethylation. The ARID domain is a potential DNA-binding domain of JARID1B. Previous studies indicate that a GC-rich DNA motif is the specific target of the ARID domain. However, the details of the interaction between the ARID domain and duplex DNA require further study. Here, we utilized NMR spectroscopy to assign the backbone amino acids and mapped the DNA-binding sites of the human JARID1B ARID domain. Perturbations to 1H-15N correlation spectra revealed that the flexible loop L1 of ARID was the main DNA-binding interface. EMSA and intrinsic fluorescence experiments demonstrated that mutations on loop L1 strongly reduced the DNA-binding activity of JARID1B ARID. Furthermore, transfection of mutant forms resulted in a distinct loss of intrinsic H3K4 demethylase activity, implying that the flexible loop L1 made a major contribution to sustaining the DNA-binding ability of JARID1B ARID domain.  相似文献   

8.
Genetic Creutzfeldt-Jakob disease (gCJD) is caused by a range of mutations in the prion protein gene (PRNP) and account for approximately 10–15% of overall human prion diseases worldwide. They are different with disease onset, disease duration, clinical signs and diagnostic findings. Here we reported a 71 year-old female with an E196K mutation in one PRNP allele, while the codon 129 was a methionine homozygous genotype. The patient started with non-specific symptoms, but displayed rapidly progressive disturbances of speech, memory, cognitive and physical movement. No periodic activity was recorded at electroencephalography (EEG) during the entire disease course. Retrospective investigation of her family members did not reveal similar neurological disorders. Total clinical course was about seven months.Key words: Creutzfeldt-Jakob disease, PRNP, E196K  相似文献   

9.
Among the several multigene families codified by the genome of T. cruzi, the TcTASV family was the latest discovered. The TcTASV (Trypomastigote, Alanine, Serine, Valine) family is composed of ∼40 members, with conserved carboxi- and amino-termini but with a variable central core. According to the length and sequence of the central region the family is split into 3 subfamilies. The TcTASV family is conserved in the genomes of – at least – lineages TcI and TcVI and has no orthologues in other trypanosomatids. In the present work we focus on the study of the TcTASV-C subfamily, composed by 16 genes in the CL Brener strain. We determined that TcTASV-C is preferentially expressed in trypomastigotes, but it is not a major component of the parasite. Both immunoflourescence and flow cytometry experiments indicated that TcTASV-C has a clonal expression, i.e. it is not expressed by all the parasites of a certain population at the same time. We also determined that TcTASV-C is phosphorylated and glycosylated. TASV-C is attached to the parasite surface by a GPI anchor and is shed spontaneously into the medium. About 30% of sera from infected hosts reacted with TcTASV-C, confirming its exposition to the immune system. Its superficial localization and secretory nature suggest a possible role in host-parasite interactions.  相似文献   

10.
A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins.  相似文献   

11.
Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is not. Phage RB3 is a close relative of T4 and has a lengthier nrdB intron. Here, we describe I-TevIII, the H–N–H endonuclease encoded by the RB3 nrdB intron. In contrast to previous reports, we demonstrate that this intron is mobile, and that this mobility is dependent on I-TevIII, which generates 2-nt 3′ extensions. The enzyme has a distinct catalytic domain, which contains the H–N–H motif, and DNA-binding domain, which contains two zinc fingers required for interaction with the DNA substrate. Most importantly, I-TevIII, unlike the H–N–H endonucleases described so far, makes a double-strand break on the DNA homing site by acting as a dimer. Through deletion analysis, the dimerization interface was mapped to the DNA-binding domain. The unusual propensity of I-TevIII to dimerize to achieve cleavage of both DNA strands underscores the versatility of the H–N–H enzyme family.  相似文献   

12.
We have assigned 1H, 15N and 13C resonances of the Bright/ARID DNA-binding domain from the human JARID1C protein, a newly discovered histone demethylase belonging to the JmjC domain-containing protein family.  相似文献   

13.
Cold shock proteins (CSP) belong to the family of single-stranded nucleic acid binding proteins with OB-fold. CSP are believed to function as ‘RNA chaperones’ and during anti-termination. We determined the solution structure of Bs-CspB bound to the single-stranded DNA (ssDNA) fragment heptathymidine (dT7) by NMR spectroscopy. Bs-CspB reveals an almost invariant conformation when bound to dT7 with only minor reorientations in loop β1–β2 and β3–β4 and of few aromatic side chains involved in base stacking. Binding studies of protein variants and mutated ssDNA demonstrated that Bs-CspB associates with ssDNA at almost diffusion controlled rates and low sequence specificity consistent with its biological function. A variation of the ssDNA affinity is accomplished solely by changes of the dissociation rate. 15N NMR relaxation and H/D exchange experiments revealed that binding of dT7 increases the stability of Bs-CspB and reduces the sub-nanosecond dynamics of the entire protein and especially of loop β3–β4.  相似文献   

14.
15.
Single-stranded (ss) DNA binding (SSB) proteins play central roles in DNA replication, recombination and repair in all organisms. We previously showed that Escherichia coli (Eco) SSB, a homotetrameric bacterial SSB, undergoes not only rapid ssDNA-binding mode transitions but also one-dimensional diffusion (or migration) while remaining bound to ssDNA. Whereas the majority of bacterial SSB family members function as homotetramers, dimeric SSB proteins were recently discovered in a distinct bacterial lineage of extremophiles, the Thermus–Deinococcus group. Here we show, using single-molecule fluorescence resonance energy transfer (FRET), that homodimeric bacterial SSB from Thermus thermophilus (Tth) is able to diffuse spontaneously along ssDNA over a wide range of salt concentrations (20–500 mM NaCl), and that TthSSB diffusion can help transiently melt the DNA hairpin structures. Furthermore, we show that two TthSSB molecules undergo transitions among different DNA-binding modes while remaining bound to ssDNA. Our results extend our previous observations on homotetrameric SSBs to homodimeric SSBs, indicating that the dynamic features may be shared among different types of SSB proteins. These dynamic features of SSBs may facilitate SSB redistribution and removal on/from ssDNA, and help recruit other SSB-interacting proteins onto ssDNA for subsequent DNA processing in DNA replication, recombination and repair.  相似文献   

16.
Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αβα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94–CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.  相似文献   

17.
Plant-specific BURP domain-containing proteins have an essential role in the plant''s development and stress responses. Although BURP domain-containing proteins have been identified in several plant species, genome-wide analysis of the BURP gene family has not been investigated in the common bean. In the present study, we identified 11 BURP family members in the common bean (Phaseolus vulgaris) genome with a comprehensive in silico analysis. Pairwise alignment and phylogenetic analyses grouped PvBURP members into four subfamilies [RD-22 like (3), PG1β-like (4), BNM2-like (3), and USP-like (1)] according to their amino acid motifs, protein domains and intron–exon structure. The physical and biochemical characteristics of amino acids, motif and intron–exon structure, and cis-regulatory elements of BURPs members were determined. Promoter regions of BURP members included stress, light, and hormone response-related cis-elements. Therefore, expression profiles of PvBURP genes were identified with in silico tools and qRT-PCR analyses under stress (salt and drought) and hormone treatment (ABA, IAA) in the current study. While significant activity changes were not observed in BURP genes in RNA-seq data sets related to salt stress, it was determined that some BURP genes were expressed differently in those with drought stress. We identified 12 different miRNA, including miRNA395, miRNA156, miRNA169, miRNA171, miRNA319, and miRNA390, targeting the nine PvBURP genes using two different in silico tools based on perfect or near‐perfect complementarity to their targets. Here we present the first study to identify and characterize the BURP genes in common bean using whole-genome analysis, and the findings may serve as a reference for future functional research in common bean.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01052-9.  相似文献   

18.
19.
Most common methods for inferring transposable element (TE) evolutionary relationships are based on dividing TEs into subfamilies using shared diagnostic nucleotides. Although originally justified based on the “master gene” model of TE evolution, computational and experimental work indicates that many of the subfamilies generated by these methods contain multiple source elements. This implies that subfamily-based methods give an incomplete picture of TE relationships. Studies on selection, functional exaptation, and predictions of horizontal transfer may all be affected. Here, we develop a Bayesian method for inferring TE ancestry that gives the probability that each sequence was replicative, its frequency of replication, and the probability that each extant TE sequence came from each possible ancestral sequence. Applying our method to 986 members of the newly-discovered LAVA family of TEs, we show that there were far more source elements in the history of LAVA expansion than subfamilies identified using the CoSeg subfamily-classification program. We also identify multiple replicative elements in the AluSc subfamily in humans. Our results strongly indicate that a reassessment of subfamily structures is necessary to obtain accurate estimates of mutation processes, phylogenetic relationships and historical times of activity.  相似文献   

20.
The nucleotide-binding-site-leucine-rich-repeat (NBS–LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. Here, we describe a collection of peanut NBS–LRR resistance gene candidates (RGCs) isolated from peanut (Arachis) species by mining Gene Bank data base. NBS–LRR sequences assembled into TIR-NBS-LRR (75.4%) and non-TIR-NBS-LRR (24.6%) subfamilies. Total of 20 distinct clades were identified and showed a high level of sequence divergence within TIR-NBS and non-TIR-NBS subfamilies. Thirty-four primer pairs were designed from these RGC sequences and used for screening different genotypes belonging to wild and cultivated peanuts. Therefore, peanut RGC identified in this study will provide useful tools for developing DNA markers and cloning the genes for resistance to different pathogens in peanut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号