首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryos of certain inbred mouse strains, and their F1 hybrids, are able to develop from the 1-cell to blastocyst stage in simple chemically defined media containing lactate (L), pyruvate (P) and glucose (G). The individual roles of these substrates in supporting complete preimplantation development in vitro was examined with 1-cell F2 embryos from B6CBF1 hybrid mice. Embryos collected between 26 and 27 h post hCG were cultured in medium containing L, P, LP or LPG. After 50 h in culture, the proportions developing to the morula stage were 1%, 83%, 94% and 100%, respectively. In combination, lactate and pyruvate appeared to act synergistically and both the rate and level of development to the morula stage were unaffected by the absence of glucose. After a further 46 h in culture, only the embryos grown in the presence of glucose developed into blastocysts. In LP medium, embryos arrested at the compacted morula stage late on day 3 of development. As culture continued in the absence of glucose, embryos decompacted (approximately 82 h post hCG) and subsequently degenerated. Exposure to medium containing glucose for the first, second or third 24 h period in culture was sufficient to support the morula-to-blastocyst transition. Glucose still supported this transition when embryos were transferred to LPG medium 3 h after the completion of compaction (76 h post hCG), but was ineffective 6 h later (82 h post hCG) once decompaction had commenced. We conclude that lactate and pyruvate together are able to support normal development of 1-cell F2 embryos to the morula stage in vitro, but that glucose is an essential component of the culture medium for development to the blastocyst stage.  相似文献   

2.
Three experiments were conducted in which 2-cell bovine embryos were prepared from oocytes, obtained from abattoir ovaries, by in-vitro maturation for 22 to 24 hours, followed by exposure to spermatozoa for 8 hours and culture for 40 hours within the cumulus. The cumulus cells were then removed, and the cleaved embryos were cultured for a further 120 hours or longer, in the presence or absence of glucose, pyruvate and lactate. Very few embryos developed in the complete absence of energy substrates. Lactate and pyruvate, alone or combined, supported development to the 8-cell stage, but pyruvate was required to support development to the morula stage (Experiment 1). When present throughout culture or when added at 48 or 96 hours postinsemination, 5.56 mM glucose was detrimental to development (Experiments 1 and 2). However, when added at 120 hours postinsemination, 5.56 mM glucose improved development to the blastocyst and expanded blastocyst stages, compared with no glucose or 11.12 mM glucose (Experiment 3).  相似文献   

3.
Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca × C57BL/6) were cultured from the one-and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D+L-lactate, in the presence and absence of 1 mM glucose (M16+G and M16-G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16-G were transferred to M16+G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16+G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16-G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 ± 2.5 [28] vs. 105 ± 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16-G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16-G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16+G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage. The results show that mouse preimplantation embryos from F1 hybrid mice (CBA/Ca × C57BL/6) need only be exposed to glucose for less than 24 h between 22 and 94 h post hCG in order to develop from the morula to the blastocyst stage in vitro. However, the exposure time needs to be increased to between 24 and 72 h in order that blastocyst cell numbers reach control levels. The importance of glucose before the morula stage may relate to the need to synthesize glycogen for later use. If the obligatory requirement for glucose is fulfilled, embryos are able to utilize pyruvate in the absence of glucose at the later stages of development. These results show that the mouse preimplantation embryo can, to some extent, adapt metabolically to changes in its external environment. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

5.
Preliminary observations showed that one-cell embryos from random-bred MF1 mice avoid cleavage arrest at the two-cell stage ('in vitro two-cell block') when cultured in modified M16 culture medium containing lactate and pyruvate but lacking glucose. The roles of lactate, pyruvate and glucose during preimplantation development of embryos from random-bred mice in vitro were therefore examined. When all three substrates were present continuously during culture, one-cell embryos arrested at the two- to four-cell stages. Improved development to the morula stage after 96 h in culture was obtained in media containing pyruvate alone, lactate and pyruvate, pyruvate and glucose, lactate pyruvate and glucose for the first 24 h, and medium containing lactate and pyruvate for the remaining 72 h. In a second experiment, embryos were cultured in medium containing pyruvate alone, lactate and pyruvate or pyruvate and glucose for the first 24 h, and lactate plus pyruvate medium for the second 24 h. Subsequent transfer to medium containing lactate, pyruvate and glucose supported the morula to blastocyst transition. These results show that developmental arrest in vitro can be overcome by changing the combination of energy substrates at different stages of preimplantation development.  相似文献   

6.
This study investigated effects of hexoses, fetal calf serum (FCS), and phenazine ethosulfate (PES) during the culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. The basal, control medium was chemically defined (CDM) plus 0.5% fatty acid-free BSA. In vitro-produced bovine zygotes were cultured in CDM-1 with 0.5 mM glucose; after 60 hr, 8-cell embryos were cultured 4.5 days in CDM-2. The 8-cell embryos were randomly allocated to a 2 x 3 x 2 x 3 factorial experimental design with two energy substrates (2 mM glucose or fructose); three additives (0.3 microM PES, 10% FCS, and control); two cryopreservation methods using no animal products (conventional slow freezing or vitrification); and semen from three bulls with two replicates for each bull. A total of 1,107 blastocysts were produced. Fructose resulted in 13% more blastocysts per oocyte than glucose (37.2% vs. 32.9%), and per 8-cell embryo (51.3% vs. 45.3%; P < 0.01). No differences were found for additives (P > 0.1) control, FCS, or PES for blastocysts per oocyte or per 8-cell embryo. There was a significant interaction (P < 0.05) between additives and hexoses for blastocyst production; although trends were similar, the benefit of fructose compared to glucose was greater for controls than for FCS or PES. Culture of embryos with PES, which reduces cytoplasmic lipid content, improved cryotolerance of bovine embryos; post-cryopreservation survival of blastocysts averaged over vitrification and slow freezing (between which there was no difference) was 91.9%, 84.9%, and 60.2% of unfrozen controls (P < 0.01) for PES, control, and FCS groups, respectively.  相似文献   

7.
Factors influencing the developmental potential of cultured rabbit zygotes and their ability to incorporate and integrate the WAP-hPC (human protein C) gene were investigated. Rabbit zygotes (n = 1053) were recovered from both superovulated and nontreated New Zealand White females. The hormonal treatment of rabbit donors resulted in a doubling of the number of recovered ova per donor when compared with the nontreated group (18 vs 9 ova). However, the quality of recovered zygotes (presence of both pronuclei) was significantly better in the nontreated group (99 vs 88%, Experiment 1). The effect of various culture media on the development of rabbit zygotes in vitro was evaluated after incubation under CO2-free conditions (Experiment 2). In serum-free, growth factor-supplemented medium (BSEITS, DME/F12, 1.5% BSA, EGF, insulin, transferrin and sodium selenite) the percentage of morula/blastocyst stage embryos was significantly higher (88%) than in DME/FCS, (DME/F12, 10% fetal calf serum, 59%) or the control group (DME/F12, 1.5% BSA, 25%). In Experiment 3, zygotes were microinjected with the WAP-hPC gene and were examined after 72 h of culture. Zygote cleavage and the percentage of morula/blastocyst stage intact embryos were higher (79 and 58%, respectively) than in microinjected embryos (31.0 and 21.5%, respectively). Summarized data of the PCR assay of microinjected zygotes demonstrated positive signals for the integration of the WAP-hPC gene in 6.6% (34 of 515) of all the microinjected zygotes.  相似文献   

8.
9.
To evaluate the embryotrophic role of three hexoses (glucose, fructose, and galactose), bovine embryos derived from somatic cell nuclear transfer (SCNT) or in vitro-fertilization (IVF) were cultured in a modified synthetic oviductal fluid (mSOF), which contained either glucose (1.5 or 5.6 mM), fructose (1.5 or 5.6 mM), or galactose (1.5 or 5.6 mM). Compared to 1.5 mM glucose, use of 1.5 mM fructose significantly enhanced blastocyst formation in both SCNT (23 vs. 33%) and IVF embryos (26 vs. 34%), while 5.6 mM fructose did not improve blastocyst formation. Using 1.5 mM galactose did not improve blastocyst formation in SCNT embryos (22 vs. 23%), whereas it significantly inhibited blastocyst formation in IVF embryos (26 vs. 0%). In both SCNT and IVF embryos, 5.6 mM glucose or galactose significantly inhibited embryo development. In a second experiment, in glucose-free mSOF, fructose at concentrations of 0.75, 1.5, 3.0, or 5.6 mM was able to support to morula (32-42 vs. 12%) and blastocyst formation (30-38 vs. 12%) compared to 0 mM fructose. In Experiment 3, addition of fructose (1.5, 3.0, or 5.6 mM) to mSOF containing 1.5 mM glucose did not further promote blastocyst formation in SCNT embryos compared with replacement with 1.5 mM fructose only. Replacement of glucose with 1.5 mM fructose significantly increased total blastomeres (143 vs. 123 cells) and trophectodermal (TE) cells (116 vs. 94 cells) and decreased inner cell mass (ICM) to TE cell ratio (0.24 vs. 0.31) in blastocysts, compared to 1.5 mM glucose. The combined addition of 1.5 mM fructose and glucose significantly increased ICM cell number (36.7 cells) and ICM/TE ratio (0.46). In conclusion, fructose might be a more efficient energy substrate than glucose for producing large number of transferable blastocysts derived from SCNT.  相似文献   

10.
Koo DB  Kim NH  Lim JG  Lee SM  Lee HT  Chung KS 《Theriogenology》1997,48(2):329-340
We compared the developmental ability and gene expression of in vivo- and IVM/IVF-derived porcine embryos following microinjection with SV40-LacZ. A total of 412 IVM/IVF-derived and 129 in vivo-collected zygotes was used to examine developmental ability and gene expression following DNA microinjection. When either DNA injected or noninjected zygotes were cultured for 4 d in NCSU 23 followed by 5 d in Eagle's minimal essential medium (EMEM), the percentages of zygotes developing to blastocysts and hatched blastocysts were higher (P < 0.05) compared with groups cultured in NCSU 23 alone. The percentages of injected embryos reaching the morula and blastocyst stages were significantly lower (P < 0.05) than that of noninjected control embryos whether in vivo or IVM/IVF derived. The percentages of morula and blastocyst stage embryos expressing the gene were higher in the in vivo-derived embryos than in IVM/IVF-derived embryos. A lower proportion of (67 to 77%) mosaicism was observed in the in vivo-derived embryos than in IVM/IVF (90 to 100%) derived embryos. The total cell number of blastocysts cultured in both NCSU 23 and EMEM media was significantly higher than that of blastocysts cultured continuously in NCSU 23. Our results suggest that this dual culture system enhanced embryo viability following microinjection of foreign DNA.  相似文献   

11.
This study was designed to evaluate the efficacy of Buffalo Rat Liver cells (BRLC) monolayers in supporting the development of in vitro matured and fertilized (IVM/IVF) bovine oocytes through to the hatched blastocyst stage compared to the commonly used co-culture system of bovine oviduct epithelial cells (BOEC). Cumulus oocyte complexes (COCs) obtained from 2- to 6-mm ovarian follicles at slaughter were matured for 24 h in TCM-199 supplemented with FBS and hormones (FSH, LH and estradiol 17-beta). In vitro fertilization (IVF) was performed using 1 x 10(6) percoll separated frozen-thawed spermatozoa in 1 ml of IVF-TL medium containing 18 to 20 matured oocytes. After 20 to 22 h of sperm exposure, 584 presumptive zygotes in 2 separate trials were randomly assigned to 3 treatment groups (BRLC co-culture, BOEC co-culture and control, consisting of medium alone). Zygotes were cultured in CZB media, a simple semi-defined medium, without glucose for the first 2 d, transferred to M199/FBS (TCM-199-HEPES supplemented with 20% HTFBS, 1 mM Sodium pyruvate), and cultured for an additional 8 days. Cleavage and development to morula and various blastocyst stages were recorded between d 3 and 11 after the start of IVF. Overall average cleavage rate was 75% (440 584 ) and did not vary across the treatments or trials. The proportion of embryos that reached the morula stage in both co-culture systems did not differ (P > 0.05) and was significantly higher (P > 0.05) compared to the control group. However, the percentage of the number of blastocysts, expanded blastocysts and hatched blastocysts varied across the treatment groups (P < 0.05), with the highest results obtained in the BRLC co-culture system. The production of blastocysts in BOEC co-culture was inconsistent between the 2 trials where a significant difference (40.6 vs 53.0%; P > 0.05) was observed. Rate of development to the blastocyst stage was similar between the 2 co-culture systems, with most of the embryos reaching the blastocyst stage by d 8 post insemination. The results of this study show that BRLC from a commercially available established cell line offer a more reliable alternative to a BOEC co-culture system for in vitro maturation, fertilization and culture of bovine embryos.  相似文献   

12.
To elucidate the mechanism by which phosphate induces developmental inhibition of rat 2-cell embryos, we examined the mutual effects of glucose and other glycolytic and non-glycolytic sugars, the non-metabolizable glucose analogue, and glycolytic inhibitors on the inhibitory effect of phosphate. In the absence of glucose, 30-49% of embryos treated with 10-500 microM phosphate were able to develop to morula and blastocysts. On the other hand, in the presence of 5 mM glucose, 10 microM phosphate decreased the developmental rate of 2-cell embryos to the 4-cell stage and completely inhibited the development beyond the 4-cell stage. In contrast, glucose showed no influence on development in phosphate-free medium. Similarly to glucose, the other glycolytic sugars fructose (5 mM) and mannose (5 mM) enhanced the inhibitory effect of 10 microM phosphate but had no influence in the absence of phosphate. In contrast, the non-glycolytic sugar and non-metabolizable glucose analogue N-acetylglucosamine and 3-O-methylglucose (3-O-MGlc), respectively, did not enhance the effects of phosphate. 2-Deoxyglucose (2DGlc), another glucose analogue that is non-metabolizable but is converted by hexokinase to 2DGlc 6-phosphate, at concentrations as low as 0.1 mM completely inhibited cell cycle progression of 2-cell embryos cultured in glucose-free (Glc(-)) medium with 10 microM phosphate. In contrast, in the absence of phosphate, 2DGlc at the same concentration allowed 55% of 2-cell embryos to develop to morula and blastocyst stages. Addition of an inhibitor of enolase in glycolysis, sodium fluoride (NaF), at 1 mM to the Glc(-) medium also enhanced the inhibitory effects of 10 microM phosphate, whereas 1 mM NaF in the absence of phosphate showed no inhibitory effects on the development of 2-cell embryos to morula and blastocyst stages. From these results, disturbance of glycolysis is a critical reason for the developmental inhibition caused by phosphate in early rat embryos in culture.  相似文献   

13.
To verify the importance of somatic cells upon in vitro embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 supplemented with estrous cow serum (10% v/v) and 0.25 mM sodium pyruvate (ECSTCM) under the following treatments: 1) ECSTCM alone; 2) together with bovine oviduct epithelial cells (BOEC); 3) with cumulus cells (CC); 4) in fresh BOEC conditioned ECSTCM; or 5) in frozen-thawed BOEC conditioned ECSTCM. Culturing zygotes encased in cumulus cells significantly reduced the cleavage rate (P<0.05). There was no difference between culture systems in the proportions of embryo development through the 8-cell stage (P=0.42) up to the morula/blastocyst stages (P=0.50) at Day 7 post insemination. However, co-culture with BOEC yielded the highest percentage (21.2% of zygotes; P<0.05) of quality Grade-1 and Grade-2 embryos with the number of blastomeres per embryo (114.4) comparable to that of 7-day-old in vivo-developed embryos of similar grades (102.5), and higher (P<0.05) than those of the other treatments. The ratio of blastocysts to total morulae/blastocysts obtained from frozen-thawed conditioned medium was lower (P<0.05) than that from ECSTCM or after co-culture with BOEC at Day 7 post insemination. On average, 7.5 to 17.5% of the zygotes developed to blastocyst, expanded blastocyst and hatched blastocyst stages by Day 10 post insemination, depending upon the culture system. The difference between treatments, however, was not significant (P=0.68). The results indicate that chronological development up to hatching of bovine IVM-IVF embryos is not favored by somatic cells; however, the presence of viable oviduct epithelial cells in culture significantly improves the quality of 7-day-old embryos.  相似文献   

14.
The objectives of this study were to examine the effect of culture system on bovine blastocyst formation rates and quality. Presumptive IVM/IVF bovine zygotes were cultured either in vitro in synthetic oviduct fluid (SOF, 25 embryos/25 microL in 5% CO2, 5% O2, 90% N2 at 39 degrees C) or in vivo in the ewe oviduct (approximately 100 embryos per oviduct). The recovery rate after in vivo culture was 53% (813/1,530). The blastocyst rate on Day 7 was significantly higher for the in vitro system (28%, 362/1,278 vs 17%, 37/813; P< 0.0001). However, after culture in vitro for a further 24 h, there was no difference in Day 8 yields (36%, 457/1,278 vs 32%, 258/813, for in vitro and in vivo culture, respectively). There was no difference in blastocyst cell number between treatments (Day 7: 96 vs 103; Day 8: 78 vs 85 for in vitro and in vivo culture, respectively). Irrespective of culture system, Day 7 blastocysts had a significantly higher cell number than those appearing on Day 8. There was no difference in pregnancy rate at Day 35 after fresh transfer of a single Day 7 blastocyst (37.5%, 21/56 vs 45.3%/, 24/53 for in vitro and in vivo culture, respectively). After cryopreservation by freezing in 10% glycerol, VS3a vitrification or solid surface vitrification, the survival of in vitro cultured embryos was significantly lower than survival of embryos cultured in the ewe oviduct or those produced by superovulation of donors. In conclusion, these findings demonstrate that while bovine zygotes cultured in vitro are capable of rates of development similar to those of their in vivo cultured counterparts (in terms of Day 8 blastocyst yield, cell number and early pregnancy rate), there are significant differences in embryo cryosurvival. This suggests that current in vitro culture systems need to be improved to optimize embryo quality and pregnancy rates.  相似文献   

15.
Development of 1-cell embryos from different strains of mice in CZB medium   总被引:23,自引:0,他引:23  
One-cell embryos from several different strains of mice have been cultured to the blastocyst stage in CZB medium. CZB medium can be used to culture CF1 x B6SJLF1/J 1-cell embryos to the blastocyst stage provided glucose is introduced into the medium on Day 3 of culture. The amount of glucose required for embryo development was titrated using a concentration range of 5.5 to 49.5 mM. With the exception of the highest concentration, all glucose levels tested supported 65-85% development to the morula and blastocyst stages. Variations of CZB medium were tested for their ability to support the development of 1-cell embryos from 4 strains of mice. For embryos from CF1 and DBA/2J (both x B6SJLF1/J) mice, which exhibit a "2-cell block" to development in vitro, CZB medium containing glutamine with the addition of glucose on Day 3 supported optimum development from the 1-cell stage to morula and blastocysts (79% and 87%). For embryos from B6D2F1/J and CD1 female mice (both x B6SJLF1/J males), which do not exhibit a "2-cell block" to in vitro development, optimum development to morula and blastocyst stages (95% and 50%) was in CZB medium containing both glutamine and glucose from the start of culture.  相似文献   

16.
This study was conducted to examine the effect of energy substrates in a serum-free culture medium on in vitro development of porcine embryos. Presumptive zygotes derived from in vitro fertilization were cultured in glucose-free North Carolina State University (NCSU)-23 medium with glucose, pyruvate, fructose and lactate added to the culture medium singly or in various combinations. In experiment 1, a higher percentage of embryos cleaved (53-63% vs 10-13%) and developed to the blastocyst stage (18-27% vs 0) after the single addition of glucose (5.6 mM), pyruvate (0.5 mM) or lactate (10 mM) than with no energy substrate addition or the addition only of fructose (5.6 mM). In experiment 2, the addition of pyruvate and lactate resulted in higher blastocyst formation (25%) than other combinations (6-22%), while the addition of glucose and pyruvate significantly inhibited blastocyst formation. Increasing lactate concentration, as a single energy supplement, from 5 to 20 mM significantly improved blastocyst formation (7% vs 14-18%), while no benefit was achieved from increasing pyruvate concentration up to 2 mM (experiment 3). Glucose-free NCSU-23 medium supplemented with 0.5 mM pyruvate and 5 mM lactate significantly improved blastocyst formation (28% vs 17%) compared with NCSU-23 medium supplemented with 5.6 mM glucose (experiment 4). In conclusion, pyruvate and lactate are preferable energy substrates to support in vitro development of porcine embryos cultured in a serum-free NCSU-23 medium.  相似文献   

17.
We examined effects of medium volume and two different culture media (HECM-3 and HECM-4) on in vitro development of hamster embryos. Groups of 5 to 8 1-cell embryos were cultured for 72 h in either < or =100 or > or =100 microl volumes. In the first experiment, embryos were cultured in Petri dishes with 2, 5, 20, 50 or 100 microl of medium using the two media (2 x 5 factorial experiment). Optimal volumes for morula and blastocyst development were 100 microl of HECM-3 and > or =50 microl of HECM-4; in HECM-4, > or =20 microl volumes were suitable whereas in HECM-3 < or = 50 microl volumes were unsuitable. In the second experiment, embryos were cultured in 100, 200, 500 and 1000 microl of HECM-3 and HECM-4 using organ culture dishes. Controls were 100 microl drops in Petri dishes. In organ culture dishes, blastocyst development was < or =6% in HECM-3 and 33-41% in HECM-4, and suitable volumes for development to at least morulae were > or =200 microl of HECM-3, and > or =100 microl of HECM-4. In both experiments development to morula and blastocyst stages with 100 microl volume in Petri dishes was significantly higher with HECM-4 (96 and 85% in Experiment 1 and 2, respectively) than that with HECM-3 (52 and 40% in Experiment 1 and 2, respectively; P < 0.05). These results indicate that attention should be paid to both type and volume of medium and interaction with type of culture dish for optimizing development of embryos in vitro.  相似文献   

18.
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Oviductal factors may be obtained by ultrafiltration of conditioned medium, added to a simple media and used in bovine embryo culture. In this study, we aimed to analyze the development of bovine embryos produced with oviductal factors compared to those cultured in the presence of BSA or serum, the effects of glucose in presence of these protein supplements, and the ability of oviductal factors to support embryo development during the entire culture period. In vitro produced bovine zygotes from slaughterhouse ovaries were cultured in modified-synthetic oviduct fluid (mSOF) alone or supplemented with (1) oviductal factors, (2) BSA and (3) FCS. Oviductal factors showed embryotrophic activity, although with blastocyst rates lower than those in BSA and FCS. Glucose (1.5 mM) added at Day 2 of culture did not affect development in the presence of oviductal factors. The number of cells in expanded blastocysts was unaffected by the presence of glucose or any of the protein supplements used. Both BSA and FCS, respectively, improved blastocyst rates of Day 6 embryos produced with oviductal factors. The effect of oviductal factors was masked by the presence of BSA during the entire culture. FCS promoted an earlier appearance of blastocysts. It is concluded that the effect of glucose on in vitro embryo development depends upon the source of protein. Oviductal factors are not an appropriate supplement for embryos beyond Day 6 of culture in SOF, although blastocyst rates of such embryos may be increased by culturing them in the presence of FCS or BSA.  相似文献   

20.
Embryo metabolism is an indicator of viability and, therefore, efficiency of the culture medium. Currently, little is known regarding porcine embryo metabolism. The objective of our study was to evaluate glucose and pyruvate uptake and lactate production in porcine embryos cultured in two different media systems. Oocytes were matured and fertilized according to standard protocols. Embryos were allocated randomly into two culture treatments, NCSU23 medium or G1.2/G2.2 sequential culture media 6-8 h post-insemination (hpi). Embryo substrate utilization was measured at the two-cell (24-30 hpi), 8-cell (80 hpi), morula (120 hpi), and blastocyst (144 hpi) stages using ultramicrofluorimetry. Glucose uptake was higher (P < 0.05) in two-cell embryos cultured in G1.2 than in NCSU23 medium (4.54 +/- 0.71, 2.16 +/- 0.87 pmol/embryo/h, respectively). Embryos cultured in G1.2/G2.2 produced significantly more lactate than those in NCSU23 at the eight-cell stage (9.41 +/- 0.71, 4.42 +/- 0.95 pmol/embryo/hr, respectively) as well as the morula stage (11.03 +/- 2.31, 6.29 +/- 0.77 pmol/embryo/hr, respectively). Pyruvate uptake was higher (P < 0.05) in morula cultured in G1.2/G2.2 versus NCSU23 (22.59 +/- 3.92, 11.29 +/- 1.57 pmol/embryo/h, respectively). Lactate production was greater (P < 0.05) in blastocysts cultured in G1.2/G2.2 (38.13 +/- 15.94 pmol/embryo/h) than blastocysts cultured in NCSU23 (8.46 +/- 2.38 pmol/embryo/h). Pyruvate uptake was also greater in blastocysts cultured in G1.2/G2.2 (24.3 +/- 11.04) than those in NCSU23 (11.30 +/- 2.70). When cultured in NCSU23 medium, two- and eight-cell embryos utilized less glucose than morulae and blastocysts, and two-cell embryos produced less lactate than blastocysts (P < 0.05). In G1.2/G2.2 media, two-cells took up less pyruvate than morulae or blastocysts, while blastocysts produced more lactate and utilized more glucose than two-cell, eight-cell and morula stage embryos (P < 0.05). As in other species, glycolysis appears to be the primary metabolic pathway in post-compaction stage porcine embryos. Culture medium composition affects not only substrate uptake, but also metabolic pathways by which these substrates are utilized in porcine embryos at several developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号