首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 5 毫秒
1.
2.
The biochemical and kinetic properties of UDP-GlcNAc:alpha-D-mannoside (GlcNAc to Man alpha 1,3) beta 1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) have been investigated in the Chinese hamster ovary glycosylation mutant Lec1A. Previous studies showed that, whereas Lec1A cells synthesize complex carbohydrates at levels consistent with partial GlcNAc-TI action, no GlcNAc-TI activity was detected in Lec1A cell-free extracts (Stanley, P., and Chaney, W. (1985) Mol. Cell. Biol. 5, 1204-1211). It is now reported that, under altered reaction conditions, GlcNAc-TI activity can be measured in Lec1A cell extracts. The GlcNAc-TI enzyme in Lec1A.2C has a pH optimum of 7.5 (compared with 6.25 for the parental enzyme) and apparent Km values for Man5GlcNAc2Asn and UDP-GlcNAc that are, respectively, 21- and 44-fold higher than the apparent Km values of GlcNAc-TI from parental Chinese hamster ovary cells. Two independent Lec1A mutants possess GlcNAc-TI activities with similarly altered biochemical and kinetic properties. In fact, under optimal assay conditions for each cell line, the level of GlcNAc-TI in Lec1A extracts is equal to that of parental Chinese hamster ovary cell extracts. Interestingly, the two glycosylation sites of the G glycoprotein of vesicular stomatitis virus are processed quite differently in Lec1A cells. The glycopeptide nearest the carboxyl-terminal appears to be a preferred substrate for the Lec1A GlcNAc-TI activity. The combined data suggest that the Lec1A mutation affects the gene that codes for GlcNAc-TI, giving rise to a structurally altered glycosyltransferase with different biochemical properties.  相似文献   

3.
Chinese hamster ovary (CHO) glycosylation mutants provide an approach to cloning mammalian glycosyltransferases by transfection and gene rescue. In this paper, complementation of the lec1 CHO mutation by human DNA is described. Lec1 transfectants expressed human N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and possessed common human DNA fragments. Cloning of GlcNAc-TI should therefore be possible.  相似文献   

4.
In plants as well as in animals beta1, 2N-acetylglucosaminyltransferase I (GlcNAc-TI) is a Golgi resident enzyme that catalyzes an essential step in the biosynthetic pathway leading from oligomannosidic N-glycans to complex or hybrid type N-linked oligosaccharides. Employing degenerated primers deduced from known GlcNAc-TI genes from animals, we were able to identify the cDNA coding for GlcNAc-TI from a Nicotiana tabacum cDNA library. The complete nucleotide sequence revealed a 1338 base pair open reading frame that codes for a polypeptide of 446 amino acids. Comparison of the deduced amino acid sequence with that of already known GlcNAc-TI polypeptides revealed no similarity of the tobacco clone within the putative cytoplasmatic, transmembrane, and stem regions. However, 40% sequence similarity was found within the putative C-terminal catalytic domain containing conserved single amino acids and peptide motifs. The predicted domain structure of the tobacco polypeptide is typical for type II transmembrane proteins and comparable to known GlcNAc-TI from animal species. In order to confirm enzyme activity a truncated form of the protein containing the putative catalytic domain was expressed using a baculovirus/insect cell system. Using pyridylaminated Man(5)- or Man(3)GlcNAc(2)as acceptor substrates and HPLC analysis of the products GlcNAc-TI activity was shown. This demonstrates that the C-terminal region of the protein comprises the catalytic domain. Expression of GlcNAc-TI mRNA in tobacco leaves was detected using RT-PCR. Southern blot analysis gave two hybridization signals of the gene in the amphidiploid genomes of the two investigated species N. tabacum and N.benthamiana.  相似文献   

5.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

6.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal structure of human SULT1A3, complexed with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.5 A resolution and carried out quantitative structure-activity relationship (QSAR) analysis with a series of phenols and catechols. SULT1A3 adopts a similar fold to mouse estrogen sulfotransferase, with a central five-stranded beta-sheet surrounded by alpha-helices. SULT1A3 is a dimer in solution but crystallized with a monomer in the asymmetric unit of the cell, although dimer interfaces were formed by interaction across crystallographic 2-fold axes. QSAR analysis revealed that the enzyme is highly selective for catechols, and catecholamines in particular, and that hydrogen bonding groups and lipophilicity (cLogD) strongly influenced K(m). We also investigated further the role of Glu(146) in SULT1A3 using site-directed mutagenesis and showed that it plays a key role not only in defining selectivity for dopamine but also in preventing many phenolic xenobiotics from binding to the enzyme.  相似文献   

7.
Two novel phenotypes previously associated with arl mutations of Escherichia coli, increased frequencies of genetic recombination and unusual sensitivity of DNA to the single-strand-specific nuclease S1, have been defined most completely by the properties of λ bacteriophages grown on arl bacteria (Arl? phages). We now find that plasmids maintained in arl mutants (Arl? plasmids) exhibit elevated recombination frequencies, unusual sensitivity to nuclease S1 (in a limited number of regions) and a new Arl phenotype, partially deficient methylation of the inner cytosine at C-C-(A/T)-G-G sequences.A variety of Arl? plasmids (all pBR322 derivatives) show elevated recombination (4 to 10-fold) by three different assays (frequencies of homomultimers and of heteromultimers, efficiency of intramolecular recombination). Plasmids from arl bacteria (after conversion to linear form) are nicked by nuclease S1 about 0.7 times per duplex; Arl+ plasmids are nuclease S1-resistant. Restriction endonuclease EcoRII (recognition sequence, C-C-(A/T)-G-G) cuts Arl? plasmid DNA more readily than Arl+ DNA, but Arl? plasmids are still more EcoRII-resistant than Dcm? plasmids (from E. coli dcm mutants, which lack the chromosomal cytosine methylase; recognition sequence, also C-C-(A/T)-G-G). By chromatographic analyses, Arl? plasmid DNA contains less 5-methylcytosine than Arl+ (0.07% versus 0.15%). although the 6-methyladenine content is the same (0.5mol%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号