首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Summary Three restriction fragment length polymorphisms (RFLPs) (MspI, PstI, ScrFI/BstNI) within the human porphobilinogen deaminase (PBG-D) gene have been studied in 47 unrelated patients with the autosomal dominant disorder, acute intermittent porphyria (AIP), and in 92 control subjects. Each enzyme identified a two-allele polymorphism with allele frequencies close to 0.50; however, marked linkage disequilibrium limited the number of observed haplotypes to four, of which one is uncommon. No association was detected between any haplotype and AIP.  相似文献   

2.
A single base insertion of C in exon 15 of the porphobilinogen deaminase (PBG-D) gene was observed in a patient with acute intermittent porphyria (AIP) by polymerase chain reaction (PCR)-direct sequencing analysis. The insertion locates between positions -22 and -21 from the translation termination codon TAA, causes a frame shift, and results in a stop codon located 4 codons downstream from the insertion (premature stopping of translation). The mutation generates an MspI recognition site, which can be used, in turn, to detect the mutant allele. Analysis of the cDNA fragments amplified by PCR revealed the existence of the abnormal PBG-D mRNA from the mutant allele in the patient.  相似文献   

3.
Summary Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disorder affecting the enzyme porphobilinogen (PBG) deaminase in the heme biosynthetic pathway. The highest prevalence of the disorder has been observed in Scandinavia, especially in northern Sweden (Lappland) where it occurs with a prevalence of 1 in 1500. Biochemical assays of the activity and concentration of PBG deaminase in red blood cells, haplotyping with 4 intragenic restriction fragment length polymorphisms (RFLPs) (MspI, PstI, BstNI, ApaLI) using the polymerase chain reaction (PCR) and screening for known base substitutions by oligonucleotide probes was performed in 28 Swedish AIP families. There was no close relationship between haplotype, biochemical findings (PBG deaminase activity, enzyme-linked immuno-sorbent assay [ELISA], and excess urinary excretion of delta-aminolevulinic acid or PBG), and a specific mutation. Three different haplotypes were identified. The haplotype 2/1/1/2 (MspI/PstI/BstNI/ApaLI; +/-/-/+) was found to be the most frequent among gene carriers (P < 0.001). The disease segregated with the haplotype 2/1/1/2 in the 10 families originating from northern Sweden. All 28 families were screened for three known point mutations. Only one was found to carry one of these mutations. Thus, the genetic background of AIP is heterogeneous in Sweden.  相似文献   

4.
Seven different restriction fragment length polymorphisms (RFLPs) at the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) locus were analyzed using Southern blotting and polymerase chain reaction based techniques to search for the frequency of each RFLP produced by StyI, SphI, HaeIII, StuI, HapII, XhoI, and BamHI restriction endonucleases, respectively, in 36 mutant alleles, including two sibling cases and 100 normal alleles. Calculation of heterozygosity indexes showed that these RFLPs were polymorphic, ranging from 0.31 to 0.69 in mucopolysaccharidosis IVA (MPS IVA) patients compared with 0.21 to 0.65 in normal individuals. There was some significant difference in several RFLPs and in the combination with four kinds of RFLPs (SphI, StuI, HapII, XhoI polymorphisms). The normal alleles were composed of 13 different RFLPs haplotypes; the most common among the Japanese population carrying normal alleles was haplotype 8 (bDEF1) (31.3%), the others being dispersed. The same haplotype 8 was the most frequent in the mutant alleles (44.4%), with seven further haplotypes. These findings revealed the striking variety of polymorphic haplotypes in the MPS IVA gene. By using these five kinds of RFLPs, we examined the theoretical informativity of haplotype analysis in heterozygote detection in nine unrelated MPS IVA families and ten unrelated normal families. All the members of the MPS IVA families studied were diagnosed as a patient, carrier, or noncarrier. We propose that prenatal diagnosis or family analysis in cases in which mutations have not been characterized is now feasible.  相似文献   

5.
Summary To examine the potential usefulness of restriction fragment length polymorphisms (RFLPs) for diagnosis of familial hypercholesterolemia (FH), we determined the genotype of FH patients and their relatives for the ApalI, NcoI, PvuII and StuI RFLP of the LDL-receptor gene in a sample of German patients attending the Lipid Clinic in Munich. There was no significant difference in the relative allele frequency between the group of FH patients and controls for any of the four polymorphisms. Using linkage analysis, we could determine the four-RFLP haplotypes of 39 defective and 90 normal LDL-receptor genes in 38 FH families. In our sample, defective LDL-receptor genes occur on 6 different chromosomes determined by the four RFLPs. This suggests that at least 6 different genetic defects may cause FH in this sample. RFLPs of the LDL-receptor gene cannot be used to detect FH in individuals; however, appropriate diagnosis can be carried out in more than 90% of families using linkage analysis and these RFLPs.  相似文献   

6.
New HindIII, RsaI and TaqI restriction fragment length polymorphisms (RFLPs) within the haemopoietic cell kinase gene in chromosome band 20q11.2 are described. These RFLPs provide a useful marker for linkage analysis in proximal 20q.  相似文献   

7.
Summary Deficiency of human fumarylacetoacetase (FAH) activity results in hereditary tyrosinemia type I. Using the restriction enzymes BglII, KpnI and StuI and a 1.3-kb cDNA probe for the FAH gene, we have found 6 restriction fragment length polymorphisms (RFLPs). These RFLPs were utilised in 3 tyrosinemia families in which one or both parents are carriers of both a tyrosinemia and a pseudodeficiency gene for FAH. Full information was obtained in two of these families. The polymorphisms identified 6 haplotypes. The haplotype distribution was significantly different in 32 unrelated tyrosinemia patients compared with a reference population of 100 individuals. The combined polymorphism information content was 0.77.  相似文献   

8.
Summary We have determined the frequencies of six restriction fragment length polymorphisms (RFLPs) of type-I collagen genes in a random sample of 100 subjects. Alpha 1 gene (COL1A1) DNA polymorphisms, FG2/MspI, 2FC6/RsaI, and NST70/RsaI, had polymorphism information content (PIC) values of 0.35, 0.32, and 0.26, respectively. Alpha 2 gene (COL1A2) RFLPs, NJ3/EcoRI, Hf32/RsaI, and Hf32/MspI had PIC values of 0.36, 0.35, and 0.25, respectively. The combined haplotype PIC values were 0.71 at the COL1A1 locus and 0.73 for COL1A2. Two COL1A1 and two COL1A2 RFLPs were more polymorphic than in the English population, making them better markers for the analysis of Italian families affected by osteogenesis imperfecta and some other inherited collagen diseases.  相似文献   

9.

Background

Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice.

Methods

The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned.

Results

Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected.

Discussion

Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group.

General significance

This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.  相似文献   

10.
Summary The low density lipoprotein (LDL) receptor gene was analyzed in 67 unrelated healthy Japanese and 38 members of six consecutive families with familial hypercholesterolemia (FH) by Southern blot hybridization with TaqI, an LDL receptor cDNA fragment containing exons 1 to 8 being used as a probe. A new TaqI RFLP at the LDL receptor locus was detected with allele frequencies of 0.67 and 0.33. The data obtained with smaller cDNA subfragment probes revealed that the TaqI RFLP site is located within 1.1 kb of the 5 side of the EcoRI site of exon 5. The TaqI RFLP was in linkage disequilibrium with the PstI RFLP but showed no significant linkage disequilibrium with the RFLPs for AvaII, ApaLI/I15, PvuII, NcoI, and ApaLI/3. Among the seven RFLPs at the LDL receptor locus, the TaqI RFLP was the only useful genetic marker in one of the six families with FH. Furthermore, the association of an additional TaqI 1.5-kb band with a mutant LDL receptor gene was observed in another family with FH in which the proband was homozygous for all of the seven RFLPs. The data obtained with various restriction enzymes and smaller cDNA subfragments probes suggested that a minor change in nucleotide sequences in the region including exons 5 to 8 is present in the mutant gene. These data suggest that the TaqI RFLP is a useful genetic marker at the LDL receptor locus and that TaqI serves for the analysis of some mutant LDL receptor genes, when used with small LDL receptor cDNA probes.  相似文献   

11.
Summary Acute intermittent porphyria (AIP) is due to a defect in porphobilinogen deaminase (PBGD, E.C. 4.1.3.8) inherited as an autosomal dominant trait. Presymptomatic carrier detection is important in order to avoid exposure to factors inducing severe clinical symptoms. Carriers and noncarriers of the AIP gene can be distinguished by linkage analysis using three intragenic RFLPs in AIP families. In the present study, the polymerase chain reaction (PCR) was used to amplify 3.3-kb genomic sequences covering three polymorphic sites. Haplotypes were identified after cleavage of amplified products with three restriction enzymes, showing that the technique can be successfully used for linkage analysis in AIP families.  相似文献   

12.
Cosmid genomic DNA clones have been used as hybridization probes in genomic Southern blot analysis to define restriction fragment length polymorphisms (RFLPs) in the major histocompatibility complex (MHC). Using 14 different enzymes and three overlapping cosmid clones we have detected six RFLPs in a 100 kilobase (kb) segment of DNA in the class III region extending centromeric of theTNFA gene towardHLA-DR. Four of the five RFLPs, defined using the enzymesTaqI,Rsa I,Hinc II, andHind III, and detected by the cosmid clone cosM7B, map to a 29 kb segment of DNA that includes all of the recently described G2 (BAT2) gene and a large portion of the 3 end of the G3 (BAT3) gene. The different RFLP variants were established by analyzing the DNA from three informative families and a panel of 51HLA-homozygous typing cell lines. CosM7B detectsTaq I variants of 4.3 kb, and 2.9 kb or 2.8 kb, Rsa I variants of 2.9 kb or 2.4 kb,Hinc II variants of 5.8 kb or 3.8 kb and 1.4 kb, and aHind III variant of 4.8 kb, while cosOT2 detects Taq I variants of 4.5 kb or 4 kb. The distribution of theRsa 1, Hinc II and Taq I RFLPs detected by cosM7B, and theTaq I RFLP detected with cosOT2, within the panel of cell line DNAs was assessed by Southern blotting. The 4.3 kbTaq I variant was observed in only one cell line with the extended haplotypeHLA-A29, C-, B44, SC30, DR4. The other RFLPs, however, occurred much more frequently. The 2.8 kb Taq I variant was observed in 20 % of haplotypes, the 2.9 kbRsa I variant was observed in 42% of haplotypes, and the 5.8 kbHinc I variant was observed in 12 % of haplotypes analyzed. The 4.5 kbTaq I variant detected by the overlapping cosmid cosOT2 was present in 21 % of haplotypes. Analysis of the RFLP variants with each other revealed seven different haplotypic combinations. Three of the haplotypic combinations were each subdivided into two subsets on the basis of the Nco I RFLP variant they carried at theTNF-B locus. These haplotypic combinations potentially allow differentiation among different extended haplotypes such asHLA-B8, SC01, DR3, HLA-B18, F1 C30, DR3, andHLA-B44, FC31, DR7. The RFLPs detected by the cosmid clones thus provide new tools which will be useful in the further genetic analysis of the MHC class III region.  相似文献   

13.
The extent of linkage equilibrium was estimated among four recently characterized human fibrinogen restriction fragment length polymorphisms (RFLPs) using a randomly selected group of 110 individuals from California. Two coding region RFLPs, RsaI and MnlI (FGA codon 312 and FGB codon 448, respectively), and two RFLPs located in the 5 flanking region of the FGB gene, AluI (HindIII) and HaeIII, were analyzed. Maximum likelihood estimates based on genotypic data indicated that the RsaI polymorphism in the FGA gene was at apparent linkage equilibrium with the MnlI, AluI, and HaeIII sites in the FGB gene, but strong linkage disequilibrium was noted for the MnlI-AluI, MnlI-HaeIII, and AluI-HaeIII RFLP pairs within the latter gene. The discrepancy in disequilibrium relationships among these closely linked RFLPs may indicate a region of increased recombination between the FGA and FGB RFLP loci. The FGA RsaI polymorphism, when used in conjunction with any of the FGB sites examined, will provide more detailed linkage or association data than analyses that would utilize only FGB sites. Effective use of polymorphisms within the fibrinogen locus will aid analysis of the relationships between fibrinogen genotype, plasma fibrinogen levels, and risk of cardiovascular disease.  相似文献   

14.
BACKGROUND AND AIMS: Acute intermittent porphyria (AIP) is an inherited disease resulting from a reduced activity of the enzyme porphobilinogen deaminase (PBG-D). The kidney is an important target for numerous porphyrinogenic drugs and it may contribute to the clinical manifestations of porphyric attacks. An evaluation of kidney PBG-D role in the AIP pathophysiology requires detailed information on kidney PBG-D properties, under normal conditions. METHODS: Rat kidney PBG-D was purified to homogeneity and initial reaction velocities were calculated by measuring uroporphyrinogen I formation at pH 8.2 for different incubation times (0-20 min) and over a wide range of substrate concentrations (0.8-66 microM). RESULTS: Purified rat kidney PBG-D is a monomeric enzyme showing only a single protein band after SDS-PAGE, Western blot and isoelectric focusing (pI 4.9). Its molecular mass is 40 +/- 2.3 kDa, determined by SDS-PAGE and 39.8 +/- 2 kDa by gel filtration chromatography. Rat kidney PBG-D has an unusual kinetic behaviour, exhibiting a deviation from the Michaelis-Menten hyperbola. PBG-D kinetic data required a fitting to an equation of higher degree, leading to the following apparent kinetic constants: K(1) = 2.08 +/- 0.01 microM and K(2) = 0.102 +/- 0.003 microM. CONCLUSION: The values of these constants fulfil the restriction 4K(2) < or = K(1)(2), necessary for the occurrence of isoenzymes, interpreted in this work as enzyme-substrate intermediates. The initial reaction velocity expression here defined, correlates with an enzyme carrying only one active site but allowing, through conformational changes, the detection of at least two enzyme-substrate intermediates formed during PBG-D reaction.  相似文献   

15.
Multiple, superimposed Type I interferon (IFN) restriction fragments were resolved following 72–92 h of horizontal electrophoresis. Restriction fragment length polymorphisms (RFLPs) for α IFN (IFNA), β IFN (IFNB), ωIFN (IFNW) and trophoblast IFN (IFNT) genes were identified in Hin dill, Eco RI and Taql digestions from 313 cattle. RFLPs with codominant segregation in cattle pedigrees were considered alleles, and 19 distinct polymorphic Type I IFN loci (5 IFNA, 4 IFNB, 8 IFNW and 2 IFNT) were identified. Allele frequencies and observed heterozygosity values were calculated for each locus and several loci were considered highly informative for linkage analysis. Bovine IFN gene numbers (10 IFNA, 6 IFNB, 20 IFNW and 6 IFNT) were estimated from the number of polymorphic loci plus additional monomorphic hybridizing bands present in Eco RI and Hindlll digestions. Physical linkage of the Type I IFN gene families on bovine chromosome 8 was demonstrated by pulsed field gel electrophoresis (PFGE). Hybridization of two or more IFN probes to similarly sized PFGE fragments suggested the tentative gene family order: IFNA/IFNW-IFNT-IFNB. These studies provide a basis for the development of more detailed genetic and physical maps of the bovine Type I IFNs.  相似文献   

16.
Of the five human alcohol dehydrogenase (ADH) genes located in the region q21–25 of chromosome 4, genetic markers have been reported previously only for class I enzymes, ADH1-3. Here, new restriction fragment length polymorphisms (RFLPs) are described for the genes of two other classes, ADH4 () and ADH5 ( or formaldehyde dehydrogenase, FDH). The frequencies and modes of inheritance of these RFLPs were determined with DNA both from unrelated individuals and from families. A polymorphic PstI site is assigned to the fourth intron of the ADH4 gene. Pairwise linkage disequilibrium calculations for these new RFLPs and already known RFLPs at the ADH2 and ADH3 loci establish strong linkage disequilibria between polymorphic MspI and BstXI sites in the ADH5 gene as well as between XbaI and MspI sites in the ADH3 gene. Furthermore, linkage disequilibria were detected between RFLPs of the ADH2 and ADH3 genes as well as between those of the ADH4 and ADH5 genes. The latter disequilibrium implies a hitherto unknown physical proximity of two genes belonging to different ADH classes. The RFLPs were used to construct chromosomal haplotypes that include three ADH classes. Of the 16 possible haplotypes for four RFLP markers used here, 10 were experimentally detected. The potential application of the ADH RFLPs and haplotypes in linkage or association studies of inherited diseases such as familial alcoholism is discussed.  相似文献   

17.
Summary Familial hypercholesterolemia (FH) is an autosomal dominant metabolic disorder caused by several different mutations in the low density lipoprotein (LDL) receptor gene. This large number of different mutations, often undetectable in Southern blotting, makes it impossible directly to diagnose the disease. However, restriction fragment length polymorphisms (RFLPs) can be used to follow the inheritance of the defective gene in FH families. In the present study, we report the use of three RFLPs, detected by PvuII, ApaLI and AvaII restriction enzymes, to determine the haplotypes of normal and defective LDL receptor genes in 61 families with FH and in 128 normal individuals. Two of the nine haplotypes were significantly more often associated with the affected genes, whereas one was significantly less frequent. Although none of the associations was strong enough to allow diagnosis in individuals, it was possible, using the three RFLPs, to identify the haplotype of the affected gene in 57 families and to carry out unequivocal diagnosis in 67% of the cases. In four families, PvuII and AvaII detected an abnormal fragment co-segregating with the disease, thus increasing the percentage of diagnosis to 73.4% of the cases.  相似文献   

18.
Acute intermittent porphyria (AIP) is a low-penetrant autosomal dominant disorder caused by mutations in the hydroxymethylbilane synthase (HMBS) gene. Direct detection of mutations is becoming the method of choice for the accurate identification of asymptomatic affected individuals within AIP families so that they can be advised to avoid drugs and other compounds that provoke the life-threatening acute neurovisceral crises that characterise the condition. We describe a prospective comparison of direct automated sequencing of cDNA (29 patients) or genomic DNA (28 patients) to identify HMBS mutations in 57 patients referred consecutively for mutational analysis; 39 different mutations were identified in 54 patients. The sensitivity of the cDNA and genomic DNA methods was 69% and 95%, respectively, indicating that analysis of genomic DNA provides a higher mutation detection rate. Thirty mutations were restricted to a single family; only one (R173W) occurred in more than three families. Of the mutations (6 missense, 8 splice defects, 10 frameshifts, 1 nonsense), 25 have not been reported previously. One novel mutation (344+33G→T) was located in a putative intron splice enhancer in intron 7. Our results define the extent of allelic heterogeneity and the types (41% missense; 59% truncating) and distribution (35% in exons 10, 12, 14) of HMBS mutations, for AIP in the United Kingdom. Received: 4 January 1999 / Accepted: 19 March 1999  相似文献   

19.
We investigated the ITI protein polymorphism in linkage analysis, usingDraI andSstI as restriction fragment length polymorphism (RFLP) markers for the ITIH1 gene. Isoelectric focusing (IEF) classification from 76 individual plasma samples and RFLP analysis from the corresponding DNA preparations disclosed linkage disequilibrium between the phenotypic IEF patterns of the two common ITI alleles, ITI*1 and ITI*2, and the diallelic DNA polymorphisms of two ITIH1 RFLPs, represented byDraI 4.0 kb andDraI 2.4 + 1.6 kb, and bySstI 6.7 kb andSstI 6.0 + 0.7 kb, for the ITI 1 and ITI 2 IEF phenotypes, respectively, and byDraI 4.0/2.4 + 1.6 kb andSstI 6.7/6.0 + 0.7 kb for the heterozygous ITI 1–2 IEF phenotype. Linked segregation between either of the RFLPs and the polymorphic ITI plasma protein locus has been established in nine informative family pedigrees. The less frequent allele in Europeans, ITI*3, is not represented by a further allelic restriction fragment in either RFLP. The significant linkage disequilibrium observed in this genetic study indicates that the ITI locus, with the alleles ITI*1 and ITI*2, must be close to, or reside within, the ITIH1 gene. The diallelic ITI protein polymorphism therefore provides an informative phenotypic marker system for chromosome 3p211-212.  相似文献   

20.
Summary An association study of restriction fragment length polymorphisms (RFLPs) in the porphobilinogen deaminase (PBGD) gene and schizophrenia was conducted. RFLPs detected by MspI, PstI, ApaLI and BstNI in intron 1 of the gene were studied in 49 patients and 79 controls. There were no significant differences between the groups in allele frequencies, genotype counts or haplotype distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号