首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasome-dependent degradation of human CDC25B phosphatase   总被引:2,自引:0,他引:2  
The CDC25 dual specificity phosphatase is a universal cell cycle regulator. The evolutionary conservation of this enzyme from yeast to man bears witness to its major role in the control of cyclin-dependent kinases (CDK) activity that are central regulators of the cell cycle machinery. CDC25 phosphatase both dephosphorylates and activates CDKs. Three human CDC25s have been identified. CDC25A is involved in the control of G1/S, and CDC25C at G2/M throught the activation of CDK1-cyclin B. The exact function of CDC25B however remains elusive. We have found that CDC25B is degraded by the proteasome pathway in vitro and in vivo. This degradation is dependent upon phosphorylation by the CDK1-cyclin A complex, but not by CDK1-cyclin B. Together with the observations of others made in yeast and mammals, our results suggest that CDC25B might act as a mitotic starter triggering the activation of an auto-amplification loop before being degraded.  相似文献   

2.
The proteasome generally recognizes substrate via its multiubiquitin chain followed by ATP-dependent unfolding and translocation of the substrate from the regulatory particle into the proteolytic core particle to be degraded. Substrate-bound ubiquitin groups are for the most part not delivered to the core particle and broken down together with substrate but instead recovered as intact free ubiquitin and ubiquitin chains. Substrate deubiquitination on the proteasome is mediated by three distinct deubiquitinating enzymes associated with the regulatory particle: RPN11, UCH37, and USP14. RPN11 cleaves at the base of the ubiquitin chain where it is linked to the substrate, whereas UCH37 and apparently USP14 mediate a stepwise removal of ubiquitin from the substrate by disassembling the chain from its distal tip. In contrast to UCH37 and USP14, RPN11 shows degradation-coupled activity; RPN11-mediated deubiquitination is apparently delayed until the proteasome is committed to degrade the substrate. Accordingly, RPN11-mediated deubiquitination promotes substrate degradation. In contrast, removal of ubiquitin prior to commitment could antagonize substrate degradation by promoting substrate dissociation from the proteasome. Emerging evidence suggests that USP14 and UCH37 can both suppress substrate degradation in this way. One line of study has shown that small molecule USP14 inhibitors can enhance proteasome function in cells, which is consistent with this model. Enhancing protein degradation could potentially have therapeutic applications for diseases involving toxic proteins that are proteasome substrates. However, the responsiveness of substrates to inhibition of proteasomal deubiquitinating enzymes may vary substantially. This substrate specificity and its mechanistic basis should be addressed in future studies.The eukaryotic proteasome is dedicated primarily to the degradation of proteins tagged by ubiquitin (1). Proteasomes strongly prefer multiubiquitinated protein substrates. The successive addition of ubiquitin groups to the substrate by ubiquitin ligases is usually accomplished through the formation of ubiquitin chains. The proteasome has much in common with the simple ATP-dependent proteases of prokaryotes and mitochondria (2, 3), although only the proteasome recognizes the ubiquitin modification. In all cases, the ATPases form a hexameric ring complex. These rings are homomeric in the case of the prokaryotic and mitochondrial proteases, whereas in eukaryotic proteasomes, the ATPase ring is heteromeric. Proteasomes and the simple ATP-dependent proteases are fundamentally similar in that they all have an ATPase ring (found within the regulatory particle [RP]1 in proteasomes, also known as the 19S particle and PA700) abutting a proteolytic complex (the core particle [CP] in proteasomes, also known as the 20S particle), although in some cases, the ATPase and protease domains are present on the same polypeptide chain (Fig. 1). Furthermore, this ancient organization of ATP-dependent proteases involves stacked ring complexes. Substrates are translocated from one ring to the next via the central pore within each ring. For most substrates, movement from ring to ring is driven by ATP hydrolysis. Thus, the substrate is captured by the ATPase ring of the RP and then translocated into the central cavity of the CP where it is hydrolyzed.Open in a separate windowFig. 1.Deubiquitinating enzymes of proteasome. In metazoans, three DUBs associate with the proteasome as shown. Each is associated with the 19-subunit RP. The detailed positioning of these enzymes on the RP is not known and is represented here schematically. RPN11 cuts at the base of the chain to release the chain en bloc. As shown, this is coupled (by an unknown mechanism) to translocation of the substrate from the RP to the CP to be degraded. In contrast, the action of USP14 and UCH37 is thought to promote substrate release from the proteasome rather than degradation. However, it should be noted that the attack of these enzymes on a substrate does not guarantee release, especially as their action on the chain is gradual, proceeding stepwise over time from the distal tip of the ubiquitin chain. Some substrates may carry more than one ubiquitin chain and thus be processed in a more complex manner. Moreover, more than one DUB might act on a given chain. The proteasome icon, adapted from Ref. 30 with permission, is based on cryo-EM imaging.The pathway of translocation contains a series of narrow constrictions through which folded proteins cannot pass. The inability of a typical folded protein to pass through these “filters” defines in part the selectivity of such proteases. However, the ATPases can exert a pulling force on the substrate that is strong enough to unfold the protein, which allows for passage through the series of constrictions. This force is exerted within the central channel of the ATPase complex. Thus, translocation and unfolding of the substrate are generally coupled events (13).Although not departing from this paradigm, the eukaryotic proteasome interacts with substrate in a more complex manner as a result of interactions involving the ubiquitin tag. Thus, many of the 13 subunits that were added to the evolutionarily ancient ATPase complex to form the RP in the eukaryotic lineage participate in recognition and processing of the ubiquitin tag (1). For example, the yeast proteasome has five and probably more distinct ubiquitin receptors, two that are integral subunits and three that are reversibly proteasome-associated (4). In addition, proteasomes of mammals have three distinct deubiquitinating enzymes (DUBs). The multiplicity of DUBs points to a surprisingly complex role of deubiquitination in proteasome function.  相似文献   

3.
4.
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated I (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.Key words: cell cycle, APC, RAA1, rice, protein degradationProtein degradation by the ubiquitin-proteasome system is necessary for the normal cell cycle. The activation of 3 enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase), are required for the addition of ubiquitin molecules to the target protein. E1 catalyzes the formation of the thiol-ester bond between C-terminal glycine in ubiquitin and cysteine in E1, and activated ubiquitin is transferred to a cysteine in E2. With the help of an E3, ubiquitin is linked to the lysine in the target protein. Subsequent ubiquitins can be attached to the previously bound ubiquitin because of the seven lysine residues in the ubiquitin molecule. Finally, the ubiquitinated substrates are degraded by the 26S proteasome.E3 confers substrate specificity. E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes. E3s are of two classes: homology to E6-AP carboxy terminus-containing proteins, and RING-finger domain-containing proteins. The RING-finger E3s have 4 subgroups: single subunit RING E3, VCB-Cul2 complex (VBC), Skp1/Cullin/F-box protein (SCF) and anaphase-promoting complex/cyclosome (APC/C).1 The SCF ligases regulate the transition from G1/S and G2/M, and APC is required for mitosis. Many APC substrates have been identified in animals.2 The polyubiquitinated substrates can be recognized by different ubiquitin receptors and degraded via 26S proteasome.3,4 However, little is known about APC substrates in plants.  相似文献   

5.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.In eukaryotes, eukaryotic translation initiation factor 4G (eIF4G) plays a central role in the recruitment of ribosomes to the mRNA 5′ end and is therefore critical for the regulation of protein synthesis (14). Two homologues of eIF4G, eIF4GI and eIF4GII, have been cloned (15). Although they differ in various respects, both homologues clearly function in translation initiation. The most thoroughly studied of these is eIF4GI, which serves as a scaffolding protein for the assembly of eIF4F, a protein complex composed of eIF4E (the mRNA cap-binding factor) and eIF4A (an ATP-dependent RNA helicase). Thus, via its association with the mRNA cap-binding protein eIF4E and with another translation initiation factor (eIF3) which is bound to the 40S ribosomal subunit, eIF4GI creates a physical link between the mRNA cap structure and the ribosome, thus facilitating cap-dependent translation initiation (25). eIF4GI functions also in cap-independent, internal ribosome entry site (IRES)-mediated translation initiation. For instance, upon picornavirus infection, eIF4G is rapidly attacked by viral proteases. The resulting eIF4GI cleavage products serve to reprogram the cell''s translational machinery, as the N-terminal cleavage product inhibits cap-dependent translation of host cell mRNAs by sequestering eIF4E while the C-terminal cleavage product stimulates IRES-mediated translation of viral mRNAs (23). Similarly, apoptotic caspases cleave eIF4G into an N-terminal fragment that blocks cap-dependent translation and a C-terminal fragment that is utilized for IRES-mediated translation of mRNAs encoding proapoptotic proteins (22).The regulation of eIF4GI cleavage by viral proteases or apoptotic caspases has been extensively studied. Little is known, however, about the regulation of eIF4GI steady-state levels. Yet the eIF4GI amount that exists at a given moment results from the sum of the effects of de novo synthesis and ongoing degradation. Many cellular proteins are physiologically degraded by the proteasome. This has been shown to be true for eIF4GI, as the factor can be degraded by the proteasome in vitro (5) and in living cells (6). However, how eIF4GI targeting for or protection from destruction by the proteasome is regulated remains unknown.There are two major routes to degradation by the proteasome. In the more conventional route, polyubiquitinated proteins are targeted to the 26S proteasome. Alternatively, a few proteins can be degraded by the 20S proteasome (and sometimes by the 26S proteasome) in a ubiquitin-independent manner (16). Interestingly, it has been shown recently that a few of these proteins (1, 2, 13) can be protected from degradation by the 20S proteasome by binding to the NAD(P)H quinone-oxydoreductase 1 (NQO1). It has been proposed that NQO1 may interact with the 20S proteasome and may consequently block access of target proteins to the 20S degradation core. Because eIF4GI can be degraded in vitro by the 20S proteasome (5) and since it appears that proteasomes can degrade eIF4GI in living cells independently of ubiquitination (6), we asked whether NQO1 could protect eIF4GI from degradation by the proteasome.  相似文献   

6.
We have partially reconstituted 20S proteasome/RNA complexes using oligonucleotides corresponding to ARE (adenosine- and uridine-rich element) (AUUUA)4 and HIV-TAR (human immunodeficiency virus-Tat transactivation response element), a stem-loop structure in the 5 UTR (untranslated region) of HIV-mRNAs. We demonstrate that these RNAs which associate with proteasomes are degraded by proteasomal endonuclease activity. The formation of these 20S proteasome/RNA substrate complexes is rather specific since 20S proteasomes do not interfere with truncated TAR that is not cleaved by proteasomal endonuclease. In addition, affinity of proteasomes for (AUUUA)4 is much stronger as it is for HIV-TAR. These results provide further arguments for our hypothesis that proteasomes could be involved in the destabilisation of cytokines mRNAs containing AUUUA sequences as well as viral mRNAs.  相似文献   

7.
The proteasome is the key player in targeted degradation of cellular proteins and serves as a therapeutic target for treating several blood malignancies. Although in general, degradation of proteins via the proteasome requires their ubiquitination, a subset of proteins can be degraded independently of their ubiquitination by direct interaction with subunits of the 20S proteasome core. Thus, investigation of the proteasome-associated proteins may help identify novel targets of proteasome degradation and provide important insights into the mechanisms of malignant cell proteostasis. Here, using biochemical purification of proteasomes from multiple myeloma (MM) cells followed by mass-spectrometry we have uncovered 77 proteins in total that specifically interacted with the 20S proteasome via its PSMA3 subunit. Our GST pull-down assays followed by western blots validated the interactions identified by mass-spectrometry. Eleven proteins were confirmed to bind PSMA3 only upon apoptotic conditions induced by a combined treatment with the proteasome inhibitor, bortezomib, and genotoxic drug, doxorubicin. Nine of these eleven proteins contained bioinformatically predicted intrinsically disordered regions thus making them susceptible to ubiquitin-independent degradation. Importantly, among those proteins five interacted with the ubiquitin binding affinity matrix suggesting that these proteins may also be ubiquitinylated and hence degraded via the ubiquitin-dependent pathway. Collectively, these PSMA3-interacting proteins represent novel potential substrates for 20S proteasomes upon apoptosis. Furthermore, these data may shed light on the molecular mechanisms of cellular response to chemotherapy.

Abbreviations: BD: bortezomib/doxorubicin treatment; CDK: cyclin-dependent kinases; CHCA: α-cyanohydroxycinnamic acid; IDP: intrinsically disordered proteins; IDR: intrinsically disordered regions; IPG: immobilized pI gradient; MALDI TOF/TOF: matrix-assisted laser desorption/ionization time-of-flight tandem mass-spectrometry; MM: multiple myeloma; ODC: ornithine decarboxylase; PI: proteasomal inhibitors; PSMA: alpha-type 20S proteasome subunits; PTMs: post-translational modifications; SDS-PAGE: sodium dodecylsulphate polyacrylamide gel electrophoresis; UIP: ubiquitin-independent proteasomal proteolysis.  相似文献   


8.
9.
Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins—which modulate proteasome activity, stability, localization, or substrate uptake—rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.The proteasome is the proteolytic machinery of the ubiquitin-proteasome system (UPS)1, the main pathway responsible for degradation of intracellular proteins. As the major cellular protease, the proteasome is a key player in eukaryotic protein homeostasis and dysregulation of the UPS has been involved in neurodegenerative diseases and cancers. Because of this, proteasomes have been identified as therapeutic targets, especially for some cancers (1). Therefore, understanding the structure and function relationship controlling proteasome activity is of major interest in biology.Mammalian proteasomes are composed of a central α7β7β7α7 barrel-shaped catalytic core particle (CP), the 20S proteasome, the structure of which has been determined (2). In cells, the 20S proteasome has been found as an isolated complex, and associated with one or two regulatory particles (RPs) of identical or different protein composition (3). Four RPs have been identified: 19S, PA28αβ, PA28γ, and PA200. The 26S proteasome is a particular complex in which the CP is capped by two 19S RPs, forming a 2.5 MDa complex. Because of a high level of heterogeneity and to the dynamics of the complex, the structure of the mammalian 26S proteasome has yet to be fully determined, but major progress has been made, resulting in a suggested spatial arrangement for the yeast 26S proteasome (4, 5). In the 19S complex, some specific subunits have specialized functions: poly-ubiquitinated (polyUb) substrate recognition, ATP-unfolding, and ubiquitin recycling. These allow ubiquitin-dependent protein degradation. In addition to the RPs, other proteasome interacting proteins (PIPs) bind proteasome complexes and affect their efficiency. These include Ecm29, which plays a role in yeast 26S proteasome assembly and stability (68).The CP degrades proteins through three main proteolytic activities, defined as trypsin-like (T-like), chymotrypsin-like (ChT-like), and peptidyl-glutamyl peptide hydrolyzing (PGPH). These activities are exerted by the three beta catalytic subunits, β2, β5, and β1, respectively. An alternative form of the 20S proteasome has been characterized, the immuno-proteasome, where the three standard catalytic subunits are replaced by the so called immuno-subunit counterparts (β2i, β5i, β1i), which can modulate its activity. The proportion of 20S immuno-proteasome varies in different cell types and is increased in cells stimulated by interferon γ (IFNγ) (9, 10). In addition, other 20S proteasome subtypes made up of a mixed assortment of standard catalytic and immuno-subunits were recently described (11). These intermediate 20S proteasome complexes exist in high proportions in many human organs, but also in human tumor cells and dendritic cells. By generating specific antigenic peptides, intermediate 20S proteasome complexes can trigger an immune response (11). Although changes in the CP composition modulate the relative contribution of the cleavage specificity of each catalytic site, overall proteasome activity is drastically increased by association between the CP and RPs.Cell imaging technologies or subcellular fractionation combined with protein blotting techniques have located proteasome complexes in several cellular compartments, mainly the cytosol, nucleus, and associated with the cytoplasmic face of the ER (12). Unlike these antibody-based techniques, quantitative proteomic approaches provide a global view of the cellular distribution of proteins in all their physiological forms (spliced, post-translationally modified, etc.) (13) and have revealed intracellular proteasome relocalization following DNA damage (14). Given the broad function of proteasomes, in quality control, antigenic peptide generation, or short-lived protein-tuned regulation, the cell is likely to adapt proteasome plasticity and dynamics to meet specific subcellular needs or to respond to stress or other stimuli. However, the precise intracellular subunit composition and distribution of proteasome complexes remains largely undetermined. This could be explained by the highly dynamic state of proteasome complexes, their heterogeneity and instability, which make them inherently difficult to study. To deal with this, efficient strategies are needed to purify and quantify fully assembled, active proteasome complexes in homogeneous cellular fractions. These strategies will help us to understand how cells adapt proteasome activity to their needs.In vivo formaldehyde cross-linking can be an efficient tool to study protein–protein interactions and cellular networks (15). It has recently been used to stabilize labile proteasome complexes, allowing the study of the proteasome network in yeast (16) and human cells (17) by quantitative proteomic analyses.In this article, we describe an integrated strategy combining in vivo cross-linking, efficient cell fractionation, affinity purification, and robust label-free quantitative proteomics. We have used this strategy to determine the intracellular distribution of fully assembled active proteasome complexes in human leukemic cells for the first time. Following IFNγ stimulation, our strategy also revealed recruitment of specific PIPs (known to participate in the UPS) to microsomal proteasome complexes. This suggests an important role for these complexes in the endoplasmic reticulum associated degradation (ERAD) pathway.  相似文献   

10.
11.
The ubiquitin-proteasome system is responsible for the degradation of numerous proteins in eukaryotes. Degradation is an essential process in many cellular pathways and involves the proteasome degrading a wide variety of unrelated substrates while retaining specificity in terms of its targets for destruction and avoiding unneeded proteolysis. How the proteasome achieves this task is the subject of intensive research. Many proteins are targeted for degradation by being covalently attached to a poly-ubiquitin chain. Several studies have indicated the importance of a disordered region for efficient degradation. Here, we analyze a data set of 482 in vivo ubiquitinated substrates and a subset in which ubiquitination is known to mediate degradation. We show that, in contrast to phosphorylation sites and other regulatory regions, ubiquitination sites do not tend to be located in disordered regions and that a large number of substrates are modified at structured regions. In degradation-mediated ubiquitination, there is a significant bias of ubiquitination sites to be in disordered regions; however, a significant number is still found in ordered regions. Moreover, in many cases, disordered regions are absent from ubiquitinated substrates or are located far away from the modified region. These surprising findings raise the question of how these proteins are successfully unfolded and ultimately degraded by the proteasome. They indicate that the folded domain must be perturbed by some additional factor, such as the p97 complex, or that ubiquitination may induce unfolding.  相似文献   

12.
13.
The 26S proteasome, a central enzyme for ubiquitin-dependent proteolysis, is a highly complex structure comprising 33 distinct subunits. Recent studies have revealed multiple dedicated chaperones involved in proteasome assembly both in yeast and in mammals. However, none of these chaperones is essential for yeast viability. PAC1 is a mammalian proteasome assembly chaperone that plays a role in the initial assembly of the 20S proteasome, the catalytic core of the 26S proteasome, but does not cause a complete loss of the 20S proteasome when knocked down. Thus, both chaperone-dependent and -independent assembly pathways exist in cells, but the contribution of the chaperone-dependent pathway remains unclear. To elucidate its biological significance in mammals, we generated PAC1 conditional knockout mice. PAC1-null mice exhibited early embryonic lethality, demonstrating that PAC1 is essential for mammalian development, especially for explosive cell proliferation. In quiescent adult hepatocytes, PAC1 is responsible for producing the majority of the 20S proteasome. PAC1-deficient hepatocytes contained normal amounts of the 26S proteasome, but they completely lost the free latent 20S proteasome. They also accumulated ubiquitinated proteins and exhibited premature senescence. Our results demonstrate the importance of the PAC1-dependent assembly pathway and of the latent 20S proteasomes for maintaining cellular integrity.The 26S proteasome is a eukaryotic ATP-dependent protease responsible for the degradation of proteins tagged with polyubiquitin chains (21). The ubiquitin-dependent proteolysis by the proteasome plays a pivotal role in various cellular processes by catalyzing the selective degradation of short-lived regulatory proteins as well as damaged proteins. Thus, the proteasome is essential for the viability of all eukaryotic cells.The 26S proteasome is a large protein complex consisting of two portions; one is the catalytic 20S proteasome of approximately 700 kDa (also called the 20S core particle), and the other is the 19S regulatory particle (RP; also called PA700) of approximately 900 kDa, both of which are composed of a set of multiple distinct subunits (70). The 20S proteasome is a cylindrically shaped stack of four heptameric rings, where the outer and inner rings each are composed of seven homologous α subunits (α1 to α7) and seven homologous β subunits (β1 to β7), respectively (5). The proteolytic active sites reside within the central chamber enclosed by the two inner β-rings, while a small channel formed by the outer α-ring, which is primarily closed, restricts the access of native proteins to the catalytic chamber. Thus, the 20S proteasome is a latent enzyme. Appending 19S RP, which consists of 19 different subunits, to the α-ring enables the 20S proteasome to degrade native proteins; 19S RP accepts ubiquitin chains of substrate proteins, removes ubiquitin chains while unfolding the substrates, and feeds the substrates into the interior proteolytic chamber of the 20S proteasome through the α-ring that is opened when the C-terminal tails of the ATPase subunits of 19S RP are inserted into the intersubunit spaces of the α-ring (24, 62, 74). However, it also has been reported that some denatured or unstructured proteins can be degraded directly by the 20S proteasome even in the absence of 19S RP and ubiquitination (37, 39).Much attention has been focused on how such a highly elaborate structure is achieved. Recent studies have identified various proteasome-dedicated chaperones that assist in the assembly of the proteasome in eukaryotic cells (23, 40, 56, 57, 65, 66). In yeast, while most of the proteasome subunits are essential for viability, the deletion of any of these chaperones does not cause lethality. In fact, many, if not all, of the deletions exhibit subtle phenotypes. In mammalian cells, although the knockdown of the assembly chaperones reduced proteasome assembly and thus proteasome activity, leading to slow cell growth, the degree of reduction was much lower than that which occurred following the knockdown of the proteasome subunit itself (33, 35, 40). These results indicate that the assembly chaperones play an auxiliary role in proteasome biogenesis.Proteasome assembly chaperone 1 (PAC1) is one of the assembly chaperones originally identified in mammalian cells (34). PAC1 plays a role in α-ring formation that occurs during the initial assembly of the 20S proteasome; it also prevents the aberrant dimerization of the α-ring. As is the case for most assembly chaperones, the knockdown of PAC1 in mammalian cells decreases proteasome activity but to a lesser extent than that in, for example, β2 knockdown (34, 35). Therefore, both PAC1-dependent and -independent assembly pathways exist in cells, but the importance of the PAC1-dependent pathway remains elusive. To further elucidate the biological significance of PAC1 and PAC1-dependent proteasome biogenesis, we generated conditional mouse mutants carrying an inactivating mutation in Psmg1, the gene coding for PAC1 protein, in the whole body, the nervous system, and in the liver. Our results demonstrate that PAC1 is essential for the development of a mouse, and that it plays important roles in maintaining cellular integrity in quiescent tissue. Our study revealed for the first time the importance of chaperone-mediated proteasome biogenesis in a whole-body mammalian system and may provide valuable knowledge in medical drug development targeting proteasomes.  相似文献   

14.
15.
16.
The 26 S proteasome is a large proteolytic machine, which degrades most intracellular proteins. We found that thioredoxin, Txnl1/TRP32, binds to Rpn11, a subunit of the regulatory complex of the human 26 S proteasome. Txnl1 is abundant, metabolically stable, and widely expressed and is present in the cytoplasm and nucleus. Txnl1 has thioredoxin activity with a redox potential of about-250 mV. Mutant Txnl1 with one active site cysteine replaced by serine formed disulfide bonds to eEF1A1, a substrate-recruiting factor of the 26 S proteasome. eEF1A1 is therefore a likely physiological substrate. In response to knockdown of Txnl1, ubiquitin-protein conjugates were moderately stabilized. Hence, Txnl1 is the first example of a direct connection between protein reduction and proteolysis, two major intracellular protein quality control mechanisms.Degradation of proteins in eukaryotic cells plays a pivotal role in the regulation of several important processes, including cell division, antigen presentation, and signal transduction (1). Most intracellular proteins are degraded by the 26 S proteasome, a 2.5-MDa protease complex composed of more than 30 different subunits (2).To become degraded, proteins are typically first conjugated to a chain of ubiquitin moieties. This reaction is catalyzed by ubiquitin ligases. The ubiquitin chains lend the proteins affinity for the 26 S proteasome (3). For efficient degradation, certain ubiquitylated proteins are shuttled to the 26 S proteasome by substrate recruiting factors, such as Rad23, Dsk2, and eEF1A (4, 5).The 26 S proteasome is composed of two stable subcomplexes, the proteolytically active 20 S core and 19 S regulatory complexes, which bind to one or both ends of the cylindrical 20 S core particle (6). The regulatory complexes first recognize the ubiquitylated substrates (3), before the substrates are deubiquitylated (7, 8), unfolded (9, 10), and translocated into the 20 S particle for degradation.Although the 26 S proteasome has been known for more than 20 years (11), novel subunits and cofactors have been described recently (12, 13). Here we report another novel proteasome-associated protein, Txnl1 (thioredoxin-like protein 1), that associates directly with the proteasome subunit Rpn11. Txnl1 exhibits thioredoxin activity and targets eEF1A1 in vivo. Previous reports have shown that eEF1A1 transfers misfolded nascent proteins from the ribosome to the 26 S proteasome for degradation (5, 14, 15). Accordingly, ubiquitin-protein conjugates were stabilized upon knockdown of Txnl1 expression. Txnl1 therefore directly links protein reduction and proteolysis, two major intracellular protein quality control mechanisms.  相似文献   

17.
Properties of condensed chromatin in barley nuclei   总被引:1,自引:0,他引:1  
A. Muller  G. Philipps  C. Gigot 《Planta》1980,149(1):69-77
A method for isolation and purification of intact nuclei from barley leaves was developed and several properties of the chromatin were studied. The dense structure of the main part of the chromatin does not alter the accessibility of the DNA to nucleases. 60% of the nuclear DNA can be degraded by micrococcal endonuclease. Nevertheless the solubility of the chromatin fragments depends on the extent of nuclease digestion; solubilisation occurring only when the major part of the internucleosomal DNA was degraded (30% of digestion). Electron microscopic observations suggest that this was due to particularly dense organization of the chromatin in situ. The possible physiological meaning of some of these properties are discussed.  相似文献   

18.
The proteasome (multicatalytic proteinase complex) is a large multimeric complex which is found in the nucleus and cytoplasm of eukaryotic cells. It plays a major role in both ubiquitin-dependent and ubiquitin-independent nonlysosomal pathways of protein degradation. Proteasome subunits are encoded by members of the same gene family and can be divided into two groups based on their similarity to the and subunits of the simpler proteasome isolated fromThermoplasma acidophilum. Proteasomes have a cylindrical structure composed of four rings of seven subunits. The 26S form of the proteasome, which is responsible for ubiquitin-dependent proteolysis, contains additional regulatory complexes. Eukaryotic proteasomes have multiple catalytic activities which are catalysed at distinct sites. Since proteasomes are unrelated to other known proteases, there are no clues as to which are the catalytic components from sequence alignments. It has been assumed from studies with yeast mutants that -type subunits play a catalytic role. Using a radiolabelled peptidyl chloromethane inhibitor of rat liver proteasomes we have directly identified RC7 as a catalytic component. Interestingly, mutants in Prel, the yeast homologue of RC7, have already been reported to have defective chymotrypsin-like activity. These results taken together confirm a direct catalytic role for these -type subunits. Proteasome activities are sensitive to conformational changes and there are several ways in which proteasome function may be modulatedin vivo. Our recent studies have shown that in animal cells at least two proteasome subunits can undergo phosphorylation, the level of which is likely to be important for determining proteasome localization, activity or ability to form larger complexes. In addition, we have isolated two isoforms of the 26S proteinase.  相似文献   

19.
Proteasomes function as the main nonlysosomal machinery of intracellular proteolysis and are involved in the regulation of the majority of important cellular processes. Despite the considerable progress that has been made in understanding the functioning of proteasomes, some issues (in particular, the RNase activity of these ribonucleoprotein complexes and its regulation) remain poorly investigated. In this study, we found to several proteins with electrophoretic mobility that corresponds to that of 20S subunits of the core proteasome complex exhibit endoribonuclease activity with respect to the sense and antisense sequences of the c-myc mRNA 3′-UTR. Mass-spectrometric analysis of tryptic hydrolysates of these proteins showed that the samples contained 20S proteasome subunits—α1 (PSMA6), α5 (PSMA5), α6 (PSMA1), and α7 (PSMA3). A number of new phosphorylation sites of α1 (PSMA6) and α7 (PSMA3) subunits were found, and a form of α5 (PSMA5) subunit with a deletion of 20 N-terminal amino-acid residues was identified. The observed differences in the manifestation of endonuclease activity by individual subunits are apparently due to posttranslational modifications of these proteins (in particular, phosphorylation). It was shown that the specificity of RNase activity changes upon proteasome dephosphorylation and under the influence of Ca2+ and Mg2+ cations. It is concluded that posttranslational modifications of proteasome subunits affect the specificity of their RNase activity.  相似文献   

20.
We have investigated three aspects of nucleotide usage by the 26S proteasome and its regulatory complex (RC). Both particles hydrolyze the four major ribonucleotides, but ATP and CTP have substantially lower K _s for hydrolysis than do GTP and UTP. The K _ for ATP hydrolysis is 15 m for the 26S proteasome and 30 m for the regulatory complex. Formation of the 26S proteasome from the RC and the 20S proteasome requires about 5 m ATP. Although measurable degradation of Ubiquitin(Ub)-lysozyme conjugates occurs in the presence of CTP, GTP, and UTP, the best nucleotide for Ub-conjugate degradation by the 26S proteasome is ATP, with an estimated K _ of 12 m. In summary, our studies show that micromolar concentrations of ATP are sufficient for several 26S proteasome activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号