首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antigen three-dimensional structure potentially limits the access of endoproteolytic processing enzymes to cleavage sites and of class II major histocompatibility antigen-presenting proteins to helper T-cell epitopes. Helper T-cell epitopes in bacteriophage T4 Hsp10 have been mapped by restimulation of splenocytes from CBA/J and C57BL/6J mice immunized in conjunction with mutant (R192G) heat-labile enterotoxin from Escherichia coli. Promiscuously immunogenic sequences were associated with unstable loops in the three-dimensional structure of T4 Hsp10. The immunodominant sequence lies on the N-terminal flank of the 22-residue mobile loop, which is sensitive to proteolysis in divergent Hsp10s. Several mobile loop deletions that inhibited proteolysis in vitro caused global changes in the helper T-cell epitope map. A mobile loop deletion that strongly stabilized the protein dramatically reduced the immunogenicity of the flanking immunodominant helper T-cell epitope, although the protein retained good overall immunogenicity. Antisera against the mobile loop deletion variants exhibited increased cross-reactivity, most especially the antisera against the strongly stabilized variant. The results support the hypothesis that unstable loops promote the presentation of flanking epitopes and suggest that loop deletion could be a general strategy to increase the breadth and strength of an immune response.  相似文献   

2.
We have mapped CD4+ T-cell epitopes located in three domains of the recombinant protective antigen of Bacillus anthracis. Mouse T-cell hybridomas specific for these epitopes were generated to study the mechanisms of proteolytic processing of recombinant protective antigen for antigen presentation by bone marrow-derived macrophages. Overall, epitopes differed considerably in their processing requirements. In particular, the kinetics of presentation, ranging from 15 (fast) to 120 min (slow), suggested sequential liberation of epitopes during proteolytic processing of the intact PA molecule. Pretreatment of macrophages with ammonium chloride or inhibitors of the major enzyme families showed that T-cell responses to an epitope presented with fast kinetics were unaffected by raising endosomal pH or inhibiting cysteine or aspartic proteinases, suggesting presentation independent of lysosomal processing. In contrast, responses to epitopes presented with slower kinetics were dependent on low pH and the activity of cysteine or aspartic proteinases indicating a requirement for lysosomal processing. In addition, responses to all epitopes, whether their presentation was dependent on low pH or not, were prevented by treatment of macrophages with broad spectrum serine proteinase inhibitors. Thus, our data are consistent with a model of sequential antigen processing within the endosomal system, beginning with a pre-processing step mediated by serine or metalloproteinases prior to further processing by lysosomal enzymes. Rapidly presented epitopes seemed to require only limited proteolysis at earlier stages of endocytosis, whereas the majority of epitopes required more extensive processing by neutral proteinases followed by lysosomal enzymes.  相似文献   

3.
Proteolytic degradation of protein antigens is thought to be a major step in the processing of Ag for presentation to T cells, but the range of proteases involved is unknown. Here we used a large panel of protease inhibitors to determine the role of each of the four classes of proteases in antigen processing. Moreover, we asked whether different proteases were necessary for presentation of different known epitopes, defined by three Th cell clones. For all three epitopes of myoglobin, intracellular thiol proteases such as cathepsins B or L were the only proteases necessary. Furthermore, myoglobin pre-digested with cathepsin B could be presented to all three clones without further processing. Thus, a single protease may be both necessary and sufficient for Ag processing to present the majority of epitopes, at least for myoglobin. This finding provides an explanation of earlier data on the fragments produced from processed myoglobin, and so may contribute to a much needed solution to the long standing problem of predicting where a protein will be cleaved during processing.  相似文献   

4.
Analysis of proteolytic processing during specific antigen presentation   总被引:1,自引:0,他引:1  
In this report we have studied the effect of protease inhibitors on B-cell-antigen processing. As a source of antigen-presenting B cells we have utilized transformants transfected with a vector carrying immunoglobulin (Ig) genes specific for the hapten trinitrophenyl (TNP). B-cell-specific (TNP-proteins) and nonspecific antigen-presentation activities were blocked to the same extent upon addition of inhibitors for protease and endosomal function. Interestingly, the effect of leupeptin, a thiol protease inhibitor, varied depending on the antigen and helper T cells utilized. These results suggest that specific groups of proteases may be required for antigen processing so that discrete antigenic epitopes in association with major histocompatibility complex molecules can be recognized by interacting T cells.  相似文献   

5.
Moss CX  Tree TI  Watts C 《The EMBO journal》2007,26(8):2137-2147
Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3-6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8-35 kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted 'hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigens.  相似文献   

6.
There is accumulating evidence that intracellular and extracellular proteases of microglia contribute to various events in the central nervous system (CNS) through both nonspecific and limited proteolysis. Cathepsin E and cathepsin S, endosomal/lysosomal proteases, have been shown to play important roles in the major histocompatibility complex (MHC) class II-mediated antigen presentation of microglia by processing of exogenous antigens and degradation of the invariant chain associated with MHC class II molecules, respectively. Some members of cathepsins are also involved in neuronal death after secreted from microglia and clearance of phagocytosed amyloid-β peptides. Tissue-type plasminogen activator, a serine protease, secreted from microglia participates in neuronal death, enhancement of N-methyl-d-aspartate receptor-mediated neuronal responses, and activation of microglia via either proteolytic or nonproteolytic activity. Calpain, a calcium-dependent cysteine protease, has been shown to play a pivotal role in the pathogenesis of multiple sclerosis by degrading myelin proteins extracellulary. Furthermore, matrix metalloproteases secreted from microglia also receive great attention as mediators of inflammation and tissue degradation through processing of pro-inflammatory cytokines and damage to the blood-brain barrier. The growing knowledge about proteolytic events mediated by microglial proteases will not only contribute to better understanding of microglial functions in the CNS but also may aid in the development of protease inhibitors as novel neuroprotective agents.  相似文献   

7.
CD4+ helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4+ T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4+ T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity.The development of an effective vaccine against HIV has been hampered by an incomplete understanding of the correlates of protection against the virus. It is generally accepted that a robust antibody response and cytotoxic T-lymphocyte (CTL) response are required to control the disease and to prevent progression to AIDS (2, 17, 19, 20, 36, 38-42). Both of these arms of the immune system require help from CD4+ helper T cells (1, 27, 48). However, several important aspects of the CD4+ helper T-cell response remain poorly defined; these include the factors that determine epitope immunodominance in the CD4+ T-cell response, the relationship of specificity in the CD4+ T-cell response to specificity in the antibody and CD8+ responses, and the investment made by HIV (or any pathogen) to control the CD4+ T-cell response.Previous studies of mice showed that antigen structure modulates antigen processing and presentation of CD4+ helper T-cell epitopes (3-6, 9, 10, 23, 24, 43). Immunodominant CD4+ helper T-cell epitopes raised in response to immunization with the HIV envelope glycoprotein gp120 were found adjacent to flexible loops between elements of secondary structure (10). This was rationalized by the fact that flexible loops more readily conform to protease active sites and therefore are preferentially cleaved by proteases during antigen processing (10, 14, 15). Helper T-cell epitopes of gp120 in humans infected with HIV were also found flanking flexible loops (30). Dominant epitopes were located in the outer domain, an average of 12 residues C-terminal to flexible loops. In the less immunogenic inner domain, epitopes were found an average of five residues N-terminal to conserved regions of the protein, once again placing the epitopes C-terminal to flexible loops (30). These results suggested that antigen structure plays a significant role in the shaping of the helper T-cell response against HIV gp120 in both mice and humans.In reviewing previous studies mapping the helper T-cell response to gp120, we noted a marked absence of CD4+ T-cell responses to regions of the outer domain that coincided with the locations of highly conserved disulfide bonds (Fig. (Fig.1).1). Disulfide bonds have previously been shown to interfere with presentation of nearby helper T-cell epitopes (13, 26). Thus, we hypothesized that disulfide bonds stabilized these regions of the protein, protecting them from proteolysis. This resulted in the exclusion of these regions from presentation to helper T cells. We further hypothesized that the deletion of these disulfide bonds would result in the production of new helper T-cell epitopes by creating localized regions of flexibility that could now be processed and presented to T cells. The creation of new helper T-cell epitopes could also potentially lead to changes in the antibody response.Open in a separate windowFIG. 1.Gaps in helper T-cell epitope frequency in the outer domain of HIV gp120 coincide with the locations of disulfide bonds. The graph illustrates the frequencies of responses by residue for the combined profiles from immunized BALB/c and CBA mice (gray area) and for a group of seven HIV-infected human subjects (black line) (10, 30).For the present work, we constructed three disulfide-bond variants of gp120 by replacing paired cysteines in the outer domain with alanines. Characterization of the variants revealed that the proteins were structurally distinct from one another and from wild-type gp120. Groups of 10 BALB/c mice immunized with these proteins produced patterns of helper T-cell responses that were very different from each other and from that of a group of 10 BALB/c mice immunized with wild-type gp120. In general, the T-cell response was reduced in mice immunized with the variant proteins. For one of the variants, anti-gp120 antibody titers were increased and exhibited CD4-blocking activity.  相似文献   

8.
Chaperonins are universally conserved proteins that nonspecifically facilitate the folding of a wide spectrum of proteins. While bacterial GroEL is functionally promiscuous with various co-chaperonin partners, its human homologue, Hsp60 functions specifically with its co-chaperonin partner, Hsp10, and not with other co-chaperonins, such as the bacterial GroES or bacteriophage T4-encoded Gp31. Co-chaperonin interaction with chaperonin is mediated by the co-chaperonin mobile loop that folds into a beta-hairpin conformation upon binding to the chaperonin. A delicate balance of flexibility and conformational preferences of the mobile loop determines co-chaperonin affinity for chaperonin. Here, we show that the ability of Hsp10, but not GroES, to interact specifically with Hsp60 lies within the mobile loop sequence. Using mutational analysis, we show that three substitutions in the GroES mobile loop are necessary and sufficient to acquire Hsp10-like specificity. Two of these substitutions are predicted to preorganize the beta-hairpin turn and one to increase the hydrophobicity of the GroEL-binding site. Together, they result in a GroES that binds chaperonins with higher affinity. It seems likely that the single ring mitochondrial Hsp60 exhibits intrinsically lower affinity for the co-chaperonin that can be compensated for by a higher affinity mobile loop.  相似文献   

9.
AAA proteases are membrane-bound ATP-dependent proteases that are present in eubacteria, mitochondria and chloroplasts and that can degrade membrane proteins. Recent evidence suggests dislocation of membrane-embedded substrates for proteolysis to occur in a hydrophilic environment; however, next to nothing is known about the mechanism of this process. Here, we have analysed the role of the membrane-spanning domains of Yta10 and Yta12, which are conserved subunits of the hetero-oligomeric m-AAA protease in the mitochondria of Saccharomyces cerevisiae. We demonstrate that the m-AAA protease retains proteolytic activity after deletion of the transmembrane segments of either Yta10 or Yta12. Although the mutant m-AAA protease is still capable of processing cytochrome c peroxidase and degrading a peripheral membrane protein, proteolysis of integral membrane proteins is impaired. We therefore propose that transmembrane segments of m-AAA protease subunits have a direct role in the dislocation of membrane-embedded substrates.  相似文献   

10.
Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited.  相似文献   

11.
Class II MHC molecules survey the endocytic compartments of APCs and present antigenic peptides to CD4 T cells. In this context, lysosomal proteases are essential not only for the generation of antigenic peptides but also for proteolysis of the invariant chain to allow the maturation of class II MHC molecules. Recent studies with protease inhibitors have implicated the asparagine endopeptidase (AEP) in class II MHC-restricted Ag presentation. We now report that AEP-deficient mice show no differences in processing of the invariant chain or maturation of class II MHC products compared with wild-type mice. In the absence of AEP, presentation to primary T cells of OVA and myelin oligodendrocyte glycoprotein, two Ags that contain asparagine residues within or in proximity to the relevant epitopes was unimpaired. Cathepsin (Cat) L, a lysosomal cysteine protease essential for the development to CD4 and NK T cells, fails to be processed into its mature two-chain form in AEP-deficient cells. Despite this, the numbers of CD4 and NK T cells are normal, showing that the single-chain form of Cat L is sufficient for its function in vivo. We conclude that AEP is essential for processing of Cat L but not for class II MHC-restricted Ag presentation.  相似文献   

12.
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8(+) lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8(+) T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections.  相似文献   

13.
An assay for the detection of yeast (Saccharomyces cerevisiae) protease activity, using partially purified yeast-derived recombinant hepatitis B surface antigen (rHBsAg) as substrate, was developed to monitor proteolysis of rHBsAg that may occur through fermentation and isolation. The method consists of incubating small amounts of yeast lysate (protease source) with the substrate at 35 degrees C for about 16 h. Substrate proteolysis is assessed by subjecting the incubation mixtures to SDS-PAGE followed by silver-staining. The type of protease responsible for particular cleavages can be identified by treating the yeast lysates with specific protease inhibitors prior to incubation with substrate. The treatment of lysates with PMSF indicated that while many lysates possessed only serine protease activity (Protease B), some possessed proteolytic activity that could not be quenched with high levels of PMSF or other serine protease inhibitors. The use of the aspartyl protease inhibitor Pepstatin A in conjunction with PMSF virtually eliminated all proteolytic activity in these lysates, indicating that an aspartyl protease (Protease A) is expressed under some fermentation conditions. The relative amount of each protease in a lysate can be determined semiquantitatively by scanning the SDS gels densitometrically and plotting the ratio of degradates to intact antigen in the presence and absence of protease inhibitors. This method was used successfully to monitor the time-dependent expression of these proteases throughout production-scale fermentations. The impact of fermentation and purification changes on those proteases specifically responsible for the rHBsAg degradation can be easily evaluated.  相似文献   

14.
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible.  相似文献   

15.
Insect proteases are implicated in Bacillus thuringiensis insecticidal proteins mode of action determining toxin specificity and sensitivity. Few data are available on the involvement of proteases in the later steps of toxicity such as protease interaction with toxin-receptor complexes and the pore formation process. In this study, a Colorado potato beetle (CPB) midgut membrane metalloprotease was found to be involved in the proteolytic processing of Cry3Aa. Interaction of Cry3Aa with BBMV membrane proteases resulted in a distinct pattern of proteolysis. Cleavage was demonstrated to occur in protease accessible regions of domain III and was specifically inhibited by the metalloprotease inhibitors 1,10-phenanthroline and acetohydroxamic acid. Proteolytic inhibition by a peptide representing a segment of proteolysis in domain III and the metalloprotease inhibitor acetohydroxamic acid correlated with increased pore formation, evidencing that Cry3Aa is a specific target of a CPB membrane metalloprotease that degrades potentially active toxin.  相似文献   

16.
Proteolytic activities and proteases of plant chloroplasts   总被引:11,自引:0,他引:11  
A concise overview on the current knowledge of the proteolytic activities in chloroplasts is presented, with an emphasis on the proteolytic events associated with thylakoid membranes. The Dl reaction centre protein of photosystem II undergoes rapid light-dependent turnover and chlorophyll a/b -binding proteins are effectively degraded upon acclimation of plants to higher irradiances. Insights into the partially characterized proteolytic systems in each case will be presented, but the proteases involved still remain unknown. It can be envisaged, however, that the proteolysis is probably an as highly regulated phenomenon as the various steps during biosynthesis of the photosynthetic multiprotein complexes. From the protease point of view, more progress has recently been made in characterization of processing proteases involved in protein import into chloroplasts and in C-terminal processing of the Dl protein. Moreover, there are an increasing number of proteases in chloroplasts which have been discovered and identified as bacterial homologues. These include a Clp-type protease, a homologue of the bacterial protease FtsH and the cyanobacterial PcrA protease, all of which have a specific location in the chloroplast but their definite physiological substrates are still missing. Attempts are made to bring together the recent progress in the identification of proteases and characterisation of proteolytic events in chloroplasts.  相似文献   

17.
Processing of antigens by proteases in the endocytic compartments of antigen presenting cells (APC) is essential to make them suitable for presentation as antigenic peptides to T lymphocytes. Several proteases of the cysteine, aspartyl and serine classes are involved in this process. It has been speculated, that the aspartyl protease cathepsin E (CatE) is involved in antigen processing in B cell line, monocyte-derived dendritic cells (DC) and murine DC. Here we show the expression of CatE in primary human B cells and DC, which was only elevated in B cells after induction with phorbol 12-myristate 13-acetate (PMA), resulted in enhanced presentation of tetanus toxin C-fragment (TTC) to the respective T cells. Inhibition of aspartyl proteases using pepstatin-A-penetratin (PepA-P), a highly efficient, cell-permeable aspartyl protease inhibitor, reduced significantly T cell activation in PMA activated B cells but not in PMA activated myeloid DC (mDC). Thus we suggest that CatE is important in the processing of TTC in primary human B cells.  相似文献   

18.
While interference with the class I MHC pathway by pathogen-encoded gene products, especially those of viruses, has been well documented, few examples of specific interference with the MHC class II pathway have been reported. Potential targets for such interference are the proteases that remove the invariant chain chaperone and generate antigenic peptides. Indeed, recent studies indicate that immature dendritic cells express cystatin C to modulate cysteine protease activity and the expression of class II MHC molecules [1]. Here, we show that Bm-CPI-2, a recently discovered cystatin homolog produced by the filarial nematode parasite Brugia malayi (W. F. Gregory et al., submitted), inhibits multiple cysteine protease activities found in the endosomes/lysosomes of human B lymphocyte lines. CPI-2 blocked the hydrolysis of synthetic substrates favored by two different families of lysosomal cysteine proteases and blocked the in vitro processing of the tetanus toxin antigen by purified lysosome fractions. Moreover, CPI-2 substantially inhibited the presentation of selected T cell epitopes from tetanus toxin by living antigen-presenting cells. Our studies provide the first example of a product from a eukaryotic parasite that can directly interfere with antigen presentation, which, in turn, may suggest how filarial parasites might inactivate the host immune response to a helminth invader.  相似文献   

19.
Objectives

Epitope-driven vaccines carrying highly conserved and immunodominant epitopes have emerged as promising approaches to overcome human immunodeficiency virus-1 (HIV-1) infection.

Methods

Two multiepitope DNA constructs encoding T cell epitopes from HIV-1 Gag, Pol, Env, Nef and Rev proteins alone and/or linked to the immunogenic epitopes derived from heat shock protein 70 (Hsp70) as an immunostimulatory agent were designed. In silico analyses were applied including MHC-I and MHC-II binding, MHC-I immunogenicity and antigen processing, population coverage, conservancy, allergenicity, toxicity and hemotoxicity. The peptide-MHC-I/MHC-II molecular docking and cytokine production analyses were carried out for predicted epitopes. The selected highly immunogenic T-cell epitopes were then used to design two multiepitope fusion constructs. Next, prediction of the physicochemical and structural properties, B cell epitopes, and constructs-toll-like receptors (TLRs) molecular docking were performed for each construct. Finally, the eukaryotic expression plasmids harboring totally 12 cytotoxic T Lymphocyte (CTL) and 10 helper T lymphocytes (HTL) epitopes from HIV-1 proteins (i.e., pEGFP-N1-gag-pol-env-nef-rev), and linked to 2 CTL and 2 HTL epitopes from Hsp70 (i.e., pEGFP-N1-hsp70-gag-pol-env-nef-rev) were generated and transfected into HEK-293 T cells for evaluating the percentage of multiepitope peptides expression using flow cytometry and western blotting.

Results

The designed DNA constructs could be successfully expressed in mammalian cells. The expression rates of Gag-Pol-Env-Nef-Rev-GFP and Hsp70-Gag-Pol-Env-Nef-Rev-GFP were about 56–60% as the bands of?~?63 and?~?72 kDa confirmed in western blotting, respectively.

Conclusion

The combined in silico/in vitro methods indicated two multiepitope constructs can be produced and used as probable effective immunogens for HIV-1 vaccine development.

  相似文献   

20.
A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases of antigen-presenting cells causes a profound inhibition of both the proteolytic degradation and the presentation of the synthetic antigen dinitrophenyl-poly-L-lysine. In contrast, the presentation of another synthetic antigen, the copolymer of L-glutamic acid and L-alanine, was enhanced by the same inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号