首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutable R-navajo alleles of cyclic origin in maize   总被引:13,自引:6,他引:7       下载免费PDF全文
Brink RA  Williams E 《Genetics》1973,73(2):273-296
The generation in cyclic fashion of 26 mutable R-Navajo (mRnj) alleles in maize involved transposition of a non-specific repressor of gene action, Modulator (Mp), first away from, and then back to, the R locus represented by the R-Navajo (Rnj) allele on chromosome 10. The mRnj alleles reconstituted in this way varied widely, and continuously, in mutability to Rnj—that is, in transposition of Mp away from the R locus, thus derepressing the Rnj gene. They were alike, or nearly so, however, in activating Ds chromosome breakage and in increasing the stability of variegated pericarp, another unstable compound allele comprising Mp conjoined with Prr on chromosomal 1. These latter two phenomena are based primarily on loci elsewhere in the genome. It is postulated that the 26 reconstituted mRnj alleles carry a common Mp which, however, is intercalated at a different site within each allele. Nucleotide sequence in the regions adjacent to Mp is assumed to determine the frequency with which a form of micro-nondisjunction occurs whereby Mp is released from a donor site. Transposition to a new site is interpreted in terms of a chromosome model that gives effect to nicking, or single strand breaks, occurring throughout the genome as a prerequisite to unwinding, strand separation, and replication, of the DNA double helix.  相似文献   

2.
Greenblatt IM 《Genetics》1984,108(2):471-485
Modulator (Mp) was mapped after it transposed from the P locus on chromosome 1 by studying 105 light variegated/red twin sectors on medium variegated pericarp ears. Sixty-one percent of the receptor sites were detectably linked to P, and these showed an asymmetry of distribution adjacent to P. No transpositions were mapped in the 4 map units proximal to P, whereas 23 cases mapped to the same length distal to P. The remaining transpositions of Mp on chromosome 1, both proximal and distal to P, were equally scattered. It has previously been shown that when Modulator transposes it replicates at the P locus and a second time at the receptor site. The pattern of transposition adjacent to P is consistent with a hypothesis that a replicon initiation site is situated proximal to P; that Modulator transposes at the time of replication; that it is not able to transpose into a replicated region but only into a replicating one. No difference in distribution of receptor sites was found when the Modulator was detected vs. not detected in the red co-twins by testing with a Dissociation element.  相似文献   

3.
Somaclonal variant plants may be of use in broadening the germplasm base of plant species and providing useful stocks for cytogenetic investigations. This study was conducted to compare morphologic, cytogenetic and enzymatic characteristics of 21 R1 (initial regenerate) bluestem,Bothriochloa sp., plants, visibly identified in a field-grown population of 522 plants as probable variants, with their respective R0 (explant donor) progenitor. An R2 seedling population was grown to ascertain the transmission of the variant R1 phenotypes. All R1 plants differed from their respective R0 progenitors in one or more morphological characters. Foliage colour was the most pronounced difference in most cases. Four of the plants, three of which were dwarfed, produced no inflorescences. The R1 plants tended to be shorter than R0 progenitors and had corresponding decreases in lengths on inflorescences and lowest racemes. All R1 plants of accessions 8911C and 8793 had an increase in chromosome number from2n=4x=40 to2n=5x=50. Three dwarfed R1 plants, derived from accession 8873B, were aneuploids, two having2n=48 chromosomes and the third being a probable mixoploid with 55–58 chromosomes. Other plants of accession 8873B had the R0 chromosome number. Fertility, as estimated by pollen stainability and seed set, generally was reduced in R1 plants relative to the R0. This reduction was not drastic, however, with all flowering plants having 45% or higher seed set. Apomixis apparently maintained fertility in all R1 plants, including those with a pentaploid chromosome number. All R1 plants differed from their respective R0 plants in peroxidase and esterase banding patterns. All R1 plants of accessions 8911C, and 8793, respectively, had identical peroxidase and esterase bands. For both enzyme systems two banding patterns were present in R1 plants of accession 8873B, with 12 of 13 plants exhibiting common patterns. Examination of R2 progeny plants confirmed the genetic transmission of the variant phenotypes and, by virtue of uniformity, indicated apomictic reproduction in the R1 plants. The results demonstrate the production of potentially useful genetic and cytogenetic variant plants via tissue culture in these apomictic species.  相似文献   

4.
Summary Five regions of the maize genome were tested for their response to endogenous factors influencing recombination. These included heterochromatic B chromosomes and abnormal chromosome 10 as well as the sex in which recombination occurred.The frequency of recombination in the proximal A 2-Bt and Bt-Pr segments of chromosome 5 was increased in the presence of B chromosomes, with the male meiocytes showing a greater response than the female meiocytes. In addition, experiments involving 0, 1, 2 and 4 B's revealed a dosage effect of B chromosomes on crossing over in chromosome 5. Recombination in the proximal Wx-Gl 15 interval of chromosome 9 was found to be slightly higher than normal in male flowers when two B chromosomes were present. This increase was accompanied by a decrease in the adjacent Sh-Wx segment. Crossing over in the distal C-Sh segment and in the C-Sh-Wx-Gl 15 regions of female flowers was unaffected by B's.Comparisons of plants heterozygous for abnormal chromosome 10 (K10 k10) and homozygous for the standard chromosome 10 (k10 k10) showed that abnormal 10 greatly enhances crossing over in the A 2-Bt and Bt-Pr segments of chromosome 5. In contrast to the finding with B's, the effect is greater in female than in male sporocytes. K10 showed no significant effect on recombination in the C-Sh-Wx-Gl 15 region of chromosome 9 except in male sporocytes, where there was a slight increase in the Sh-Wx region of 0 B K10 k10 plants and a possible interaction with B chromosomes to raise the level of recombination between Wx and Gl 15. The fact that the regions adjacent to the centromere of chromosome 9 show little or no response to the presence of K10 indicates that the proximal heterochromatin of this chromosome differs qualitatively from that of other maize chromosomes. This conclusion is supported by a comparison of the effects of B chromosomes, K10 and sex on crossing over in chromosomes 5 and 9.Dedicated to Dr. M. M. Rhoades on the occasion of his seventieth birthday.  相似文献   

5.
The transfer of genetic material into soybean tissue was accomplished by using an avirulent strain of Agrobacterium tumefaciens which contained the binary vector pGA482. The method used for transformation requires no tissue culture steps as it involves the inoculation of the plumule, cotyledonary node, and adjacent cotyledon tissues of germinating seeds. The identification of neomycin phosphotransferase (NPT) II enzyme activity in the tissues of 16 (R0) soybean plants indicated that the plant expressible Nos-NPT II gene, contained within the T-DNA region from pGA482, had been transferred at least into somatic tissues. Putative transformed R0 soybean plants were advanced to produce R1 plants which were also assayed for the presence of the transferred Nos-NPT II gene. The combined results of these assays indicated that about 0.7% of the surviving inoculated seeds yielded transformed tissues in the R0 plant, and that about 1/10 of these plants yielded transformed R1 plants. The presence of the Nos-NPT II gene in DNAs isolated from both R0 and R1 plant was demonstrated by using genomic blot hybridization and polymerase chain reaction methods. Integration of this gene into the soybean genome was demonstrated for three R1 soybean plants.  相似文献   

6.
Effect of suppression of the source activity on some physiological characteristics of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) was studied on plants grown in water culture. The plants were examined at the mixotrophic stage of growth period, during their transition from vegetative state to relative dormancy in autumn. The average temperature over 10 days of the experiment was 6°C at 9-h photoperiod and illuminance of 8–20 klx. The source strength was suppressed successively with a series of treatments: intact control plants (V1); plants with the seed endosperm removed (V2); plants with photosynthesis inhibited (V3); plants with the seed endosperm removed and photosynthesis inhibited (V4); plants with the seed endosperm removed, photosynthesis inhibited, and the root nutrient medium replaced with distilled water (V5). On the 6th–10th day of the experiment, the relative growth rate (RGR) was determined from dry weight increments. At the same time, the distribution of biomass among organs, the CO2 exchange rates (photosynthesis and dark respiration), the content and proportions of sugars (sucrose, glucose, and fructose), the total content of phenolic compounds and flavonoids, the index of membrane stability (IMS) in leaves, and frost hardiness of plants were measured. Frost hardiness of vegetating plants was shown to be inversely related to RGR (R = ?0.906), dark respiration rate (R = ?0.789), the percentage of sucrose in total sugar content (R = ?0.737), leaf IMS (R = ?0.390), and the rate of apparent photosynthesis (R = ?0.288); it was directly proportional to the content of flavonoids (R =0.973), total phenols (R = 0.743), and sugars (R = 0.385). The role of modified source-sink relations in frost hardiness of vegetating plants at the stage of their transition to cold hardening is discussed. The differences between plants undergoing this transition and cold-hardened plants are considered, as well as the importance of phenolic compounds for the development of frost hardiness.  相似文献   

7.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

8.
The R21(TC) factor, obtained by transduction of the R10(TC.CM.SM.SA) factor with phage ε to group E Salmonella, is not transferable by the normal conjugal process. However, when R21(TC)+ transductants are infected with the F13 factor, the nontransferable R21(TC) factor acquires transmissibility by conjugation. R21(TC)+ conjugants of Escherichia coli K-12, to which only the R21(TC) factor was transmitted by cell-to-cell contact from an F′ R+ donor, were still unable to transfer their R21(TC) factor by conjugation. In crosses between Hfr and FE. coli K-12 strains containing R21(TC), the gene responsible for tetracycline resistance was located on the E. coli K-12 chromosome between lac and pro, near lac.  相似文献   

9.
During meiosis, the RAD51 recombinase and its meiosis-specific homolog DMC1 mediate DNA strand exchange between homologous chromosomes. The proteins form a right-handed nucleoprotein complex on ssDNA called the presynaptic filament. In an ATP-dependent manner, the presynaptic filament searches for homology to form a physical connection with the homologous chromosome. We constructed two variants of hDMC1 altering the conserved lysine residue of the Walker A motif to arginine (hDMC1K132R) or alanine (hDMC1K132A). The hDMC1 variants were expressed in Escherichia coli and purified to near homogeneity. Both hDMC1K132R and hDMC1K132A variants were devoid of ATP hydrolysis. The hDMC1K132R variant was attenuated for ATP binding that was partially restored by the addition of either ssDNA or calcium. The hDMC1K132R variant was partially capable of homologous DNA pairing and strand exchange in the presence of calcium and protecting DNA from a nuclease, while the hDMC1K132A variant was inactive. These results suggest that the conserved lysine of the Walker A motif in hDMC1 plays a key role in ATP binding. Furthermore, the binding of calcium and ssDNA promotes a conformational change in the ATP binding pocket of hDMC1 that promotes ATP binding. Our results provide evidence that the conserved lysine in the Walker A motif of hDMC1 is critical for ATP binding which is required for presynaptic filament formation.  相似文献   

10.
Background and Aims Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs.Methods In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log–log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made.Key Results The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants.Conclusions The results support the AP theory’s prediction that MA scales nearly one-to-one with MR (i.e. MAMR ≈1·0) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests.  相似文献   

11.
Difference in isozymes and activities of peroxidase (POD) and superoxide dismutase (SOD) in two barley (Hordeum vulgare L.) genotypes differing in salt tolerance (Gebeina, tolerant; Quzhou, sensitive) was investigated using a hydroponic experiment. The activities of both enzymes were significantly increased when the plants of the two barley genotypes were exposed to salt stress, with salt-tolerant genotype being generally higher than the sensitive one. The variation in the POD and SOD isozymes was dependent on barley genotype, salt level and exposure time. When the plants were exposed to salt stress for 10 days, two new POD isozymes were found, R m0.26 (R m, relative mobility of enzyme to dye) in Gebeina and R m0.45 in Quzhou. Both isozymes disappeared after 20 days of salt stress, but R m0.26 appeared again 30 days after the stress. Two new SOD isozymes of R m0.19 and R m0.46 were found in Gebeina when exposed to NaCl for 10 days, but only R m0.46 in Quzhou. As the time of salt stress extended, more new SOD isozymes were detected, R m0.35 in both genotypes in all different salt treatments and R m0.48 in Gebeina under 200 mM NaCl stress. At 30 days after the stress, all the new SOD isozymes disappeared except for R m0.48 in Gebeina under 200 mM NaCl stress. The results suggest that the increased POD and SOD activities could be partly due to the formation of some new isozymes and the tolerant variety had better ability to form new isozymes to overcome salt stress.  相似文献   

12.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

13.
Summary Plants were regenerated from adventitious buds and somatic embryos (R0) of melon (Cucumis melo L.), the cultivar Andes. Somaclonal variants of melon with low temperature germinability were selected from the progenies (R1) of R0 plants. Among 5,618 R1 seeds harvested from 23 R0 plants that were regenerated from adventitious buds 4 seeds germinated after 5 days of culture at 15 °C (selection rate; 0.07%). However, among 374 R2 seeds harvested from 2 R1 plants no seed germinated after 7 days of culture at 14 °C. Among 9,181 R1 seeds harvested from 50 R0 plants regenerated from somatic embryos 110 seeds germinated after 5 days of culture at 15 °C (selection rate; 1.20%). Among 3,717 R2 seeds harvested from 17 R1 plants 113 seeds germinated after 7 days of culture at 14 °C (selection rate; 3.04%). R3 seeds were collected from these R2 plants following self-pollination. Forty-five of the 47 lines (R3) originated from 10 R0 plants showed higher germination rates than that of the original cultivar. Selected lines with low-temperature germinability showed greater fruit growth rate than the original cultivar during the middle stage when they were cultivated in a greenhouse under low-temperature conditions. Of fruits harvested from 31 lines, 15 lines showed greater fruit volume than the original cultivar.  相似文献   

14.
Biofortification of bread wheat by the transfer of useful variability of high grain Fe and Zn from Aegilops kotschyi through induced homoeologous pairing is the most feasible approach to alleviate micronutrient malnutrition worldwide. Deficiency of chromosome 5B in interspecific hybrids allows homoeologous pairing and recombination of chromosomes of wheat with those of the related species. The interspecific hybrid plants without 5B chromosome showed much higher chromosome pairing than did the plants with 5B. The F1 plants without 5B chromosome were selected and repeatedly backcrossed with wheat cultivar PBW343. The chromosome number of BC2F1 plants ranged from 43 to 60 with several univalents and multivalents. Molecular markers and GISH analysis confirmed the introgression of U/S chromosomes of Ae. kotschyi and their fragments in wheat. The BC2F2 plants showed up to 125 % increase in Fe and 158 % increase in Zn compared to PBW343 with Lr24 and Yr36. Induced homoeologous pairing in the absence of 5B was found to be an effective approach for transfer of useful variability for enhanced grain Fe and Zn content for biofortification of wheat for high grain micronutrient content.  相似文献   

15.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   

16.
17.
A population of 171 F3 genotypes derived from a cross between CSR10 (salt tolerant, indica) and Taraori Basmati (HBC19) was evaluated for various salt-tolerance attributes at vegetative stage using a hydroponic culture system. Substantial variation was observed in F3 population for relative growth rate (range 0.065–0.187), Na-K ratio (0.023–0.376) and visual injury symptoms (score 1–9). The mean individual score of CSR10 × HBC19 F3 plants ranged from 1.7 to 9.0 with mean value of 5.07. Seven of the F3 plants showed transgressive segregation for salt tolerance. F3 individuals at both extremes of the response distribution were selected and genotyped using 30 SSR markers displaying polymorphism between the two parental genotypes. As many as 18/30 SSR markers showed distorted segregation ratios among the 30 selected salt-tolerant and salt-sensitive CSR10 × HBC19 F3 plants. Linear regression analysis showed significant association of three markers (RM162 mapped on chromosome 6, and RM209 and RM287 on chromosome 11) with relative growth rate and two markers (RM212 on chromosome 1 and RM206 on chromosome 11) with Na-K ratio explaining 31.3% and 25.6% of phenotypic variation, respectively.  相似文献   

18.
Life table parameters of diamondback moth, Plutella xylostella (L.), were studied at seven constant temperatures (10, 15, 20, 25, 28, 30, and 35 °C) on two brassicaceous host plants, cauliflower (Brassica oleracea var. botrytis) and cabbage (Brassica oleracea var. capitata). Survival, longevity and reproduction were examined and used to construct a life table. The survival at immature stages varied from 53.0 to 84.1% on cauliflower and from 58.3 to 86.2% on cabbage at 10–30 °C. P. xylostella did not survive at 35 °C. The female adult longevity ranged from 12.9 days at 30 °C to 30.4 days at 10 °C on cauliflower and 9.7 days at 30 °C to 40.0 days at 15 °C on cabbage. The net reproductive rate (R0) increased with increasing temperature, while generation time (T) decreased. This caused the intrinsic rate of increase (rm) to increase from 0.038 to 0.340 on cauliflower and 0.033 to 0.315 on cabbage from 10 to 28 °C. The significant decrease in R0 caused a decrease in rm at 30 °C. The rm values on cauliflower were significantly higher than cabbage at 15, 20, 28 and 30 °C.  相似文献   

19.
Zair  I.  Chlyah  A.  Sabounji  K.  Tittahsen  M.  Chlyah  H. 《Plant Cell, Tissue and Organ Culture》2003,73(3):237-244
Somatic embryogenesis through callus initiation has been quantified under salt stress conditions for 8 wheat cultivars currently cultivated in Morocco. The cultivars were classed according to the mean number of somatic embryos formed per immature embryo half and regenerated plants per 100 explants under saline conditions. Regenerated plants from control callus (R0–0) and callus initiated on 10 g l–1 NaCl (R0–10) did not show significant differences concerning plant height, spike length and grain number per ear but, the R0 plants remained less developed than parent plants. When watered with a solution containing more than 20 g l–1 NaCl, the seeds of cultivar Te derived from R0–10 regenerated plants exhibited the best elongation of roots and coleoptiles. Furthermore, a chlorophyll fluorescence test showed a clear improvement in salt tolerance of R0–10 plants at four to five-leaf stage, compared to R0–0 plants. It is concluded that plant regeneration from callus initiated on high NaCl levels may be a valid method of selection for salt tolerance.  相似文献   

20.
We present data on the morphological, cytological, biochemical and genetic characteristics of tomato regenerants obtained through anther culture. As a result of induced androgenesis, more than 6,000 rooted regenerants were developed that differed both from the donor plants and among each other with respect to habitus and leaf, flower and inflorescence morphology. Cytological analysis revealed a great variability in chromosome number in the cells of the regenerated plants. While most of the regenerants were mixoploid, the majority of the cells had a haploid chromosome number. R1 and R2 progenies were tested for their resistance to Clavibacter michiganense subsp. michiganense (Cmm 7). Some of the regenerants were resistant to the pathogen. A biochemical analysis of fruit from R3 and R4 plants showed a higher content of dry matter, sugars and vitamin C in the regenerant plants obtained from the hybrids than in those from the cultivars and control plants. The values of the parameters of hybrid regenerants grown in the greenhouse were about 1.5-fold higher than those of the hybrid regenerants grown in the field, and this trend is clearly expressed in all of the hybrid regenerants. The results obtained suggest that induced androgenesis and gametoclonal variation may be used as an additional tool to create a large range of new forms. The application of the latter in breeding programs would accelerate the development of tomato lines and varieties that would be more productive, disease-resistant, highly nutritive and flavour-acceptable.Abbreviations BAP N6-Benzylaminopurine - Cmm Clavibacter michiganense subsp. michiganense - cfu Colony-forming units - GA 3 Gibberellic acid - IBA Indole-3-butyric acid - ms Male sterility - PDA Potato dextrose agar Communicated by H. Lörz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号