首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

2.
Subtypes of insulin-growth factor I (IGF-I) receptors, including hybrid receptors containing insulin receptor alpha beta dimers associated with IGF-I receptor alpha beta dimers, have been described in a number of systems. The molecular basis of the multiple subtypes and their functional significance is not understood. Ligand-dependent phosphorylation of insulin and IGF-I receptors and immunoprecipitation with antipeptide and monoclonal antibodies have been used to characterize the subpopulations of these receptors in the human KB cell line. IGF-I receptors exhibit beta subunits of 95 and 102 kDa in these cells. IGF-I receptors containing 102-kDa beta subunits are immunoprecipitated by the IGF-I receptor-specific antibody alpha-IR3. Antibody alpha-IR3 does not appear to recognize a hybrid receptor in these cells. However, an antipeptide antibody against the carboxyl-terminal domain of the insulin receptor (AbP5) immunoprecipitates a population of receptors phosphorylated in response to IGF-I (1 nM) which contains both 95- and 102-kDa beta subunits. These receptors must be hybrid complexes because AbP5 does not recognize the 102-kDa beta subunit directly. The inability of antibody alpha-IR3 to recognize these complexes suggests that their IGF-I receptor alpha subunits must differ from typical IGF-I receptor alpha subunits either in primary sequence or conformation. Therefore, KB cells may contain more than one type of IGF-I receptor alpha subunit. Hybrid IGF-I receptors can also be distinguished from homotypic IGF-I receptors by their responsiveness to IGF-II. Stimulation of autophosphorylation in hybrid IGF-I receptors by IGF-I is 3-4-fold greater than that seen in response to IGF-II. In contrast, IGF-I and IGF-II are nearly equipotent in stimulating autophosphorylation in the alpha-IR3-reactive receptor population. This suggests the existence of functionally distinct receptor subtypes which may differ in their ability to mediate the biological effects of IGF-II.  相似文献   

3.
Current studies suggest that several distinct populations of nicotinic acetylcholine (ACh) receptors exist. One of these is the muscle-type nicotinic receptors with which neuromuscular nicotinic receptor ligands and the snake toxin alpha-bungarotoxin interact. alpha-Bungarotoxin potently binds to these nicotinic receptors and blocks their function, two characteristics that have made the alpha-toxin a very useful probe for the characterization of these sites. In neuronal tissues, several populations of nicotinic receptors have been identified which, although they share a nicotinic pharmacology, have unique characteristics. The alpha-bungarotoxin-insensitive neuronal nicotinic receptors, which may be involved in mediating neuronal excitability, bind nicotinic agonists with high affinity but do not interact with alpha-bungarotoxin. Subtypes of these alpha-toxin-insensitive receptors appear to exist, as evidenced by findings that some are inhibited by neuronal bungarotoxin whereas others are not. In addition to the alpha-bungarotoxin-insensitive sites, alpha-bungarotoxin-sensitive neuronal nicotinic receptors are also present in neuronal tissues. These latter receptors bind alpha-bungarotoxin with high affinity and nicotinic agonists with an affinity in the microM range. The function of the nicotinic alpha-bungarotoxin receptors are as yet uncertain. Thymopoietin, a polypeptide linked to immune function, appears to interact specifically with nicotinic receptor populations that bind alpha-bungarotoxin. Thus, in muscle tissue where alpha-bungarotoxin both binds to the receptor and blocks activity, thymopoietin also potently binds to the receptor and inhibits nicotinic receptors-mediated function. In neuronal tissues, thymopoietin interacts only with the nicotinic alpha-bungarotoxin site and not the alpha-bungarotoxin-insensitive neuronal nicotinic receptor population. These observations that thymopoietin potently and specifically interacts with nicotinic alpha-bungarotoxin-sensitive receptors in neuronal and muscle tissue, together with findings that thymopoietin is an endogenously occurring agent, could suggest that this immune-related polypeptide represents a ligand for the alpha-bungarotoxin receptors. The function of thymopoietin at the alpha-bungarotoxin receptor is as yet uncertain; however, a potential trophic, as well as other roles are suggested.  相似文献   

4.
A growing body of evidence indicates that G-protein-coupled receptors undergo complex conformational changes upon agonist activation. It is likely that the extracellular region, including the N terminus, undergoes activation-dependent conformational changes. We examined this by generating antibodies to regions within the N terminus of micro-opioid receptors. We find that antibodies to the midportion of the N-terminal tail exhibit enhanced recognition of activated receptors, whereas those to the distal regions do not. The enhanced recognition is abolished upon treatment with agents that block G-protein coupling or deglycosylate the receptor. This suggests that the N-terminal region of mu receptors undergoes conformational changes following receptor activation that can be selectively detected by these region-specific antibodies. We used these antibodies to characterize micro receptor type-specific ligands and find that the antibodies accurately differentiate ligands with varying efficacies. Next, we examined if these antibodies can be used to investigate the extent and duration of activation of endogenous receptors. We find that peripheral morphine administration leads to a time-dependent increase in antibody binding in the striatum and prefrontal cortex with a peak at about 30 min, indicating that these antibodies can be used to probe the spatio-temporal dynamics of native mu receptors. Finally, we show that this strategy of targeting the N-terminal region to generate receptor conformation-specific antisera can be applied to other G(alpha)(i)-coupled (delta-opioid, CB1 cannabinoid, alpha(2A)-adrenergic) as well as G(alpha)(s)-(beta(2)-adrenergic) and G(alpha)(q)-coupled (AT1 angiotensin) receptors. Taken together, these studies describe antisera as tools that allow, for the first time, studies probing differential conformation states of G-protein-coupled receptors, which could be used to identify molecules of therapeutic interest.  相似文献   

5.
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.  相似文献   

6.
Own and some last literary data on the vertebrate olfactory receptors are summarized. Special attention is devoted to the identification of these receptors. The connection of these receptors with the proteins binding the guanosine triphosphate is demonstrated. On this basis a biochemical test to elicit the olfactory receptors is proposed. Using the boar pheromon receptor the application of this test to differentiate the true olfactory receptor and a respiratory lining component that binds the pheromon with the same characteristics like the receptor is shown. The olfactory receptors may be represented no only by the integral but also by peripheric membrane proteins. The questions on the olfactory mucosa receptors and mechanism of the signal transduction in the olfactory cell have been discussed.  相似文献   

7.
The functional activity of G protein-coupled receptors can be modified by their ability to form oligomeric complexes with G protein-coupled receptors from other receptor families. Emerging evidence suggests that the appetite-regulating hormone ghrelin is a directly acting vasodilator peptide with anti-inflammatory activity, therefore, we have examined the ability of ghrelin receptors to oligomerize with members of the prostanoid receptor family which are also involved in modulating vascular activity and inflammatory responses. Using the techniques of bioluminescence resonance energy transfer and co-immunoprecipitation, we detected the ability of ghrelin receptors to hetero-oligomerize with prostaglandin E(2) receptor subtype EP(3-I,) prostacyclin receptors, and thromboxane A(2) (TPalpha) receptors, when transiently over-expressed in human embryonic kidney 293 cells. These results suggest that hetero-oligomeric interactions between ghrelin receptors and prostanoid receptors are likely to be of biological relevance. Co-transfection of cells with ghrelin receptor and prostanoid receptors significantly decreased ghrelin receptor expression and attenuated its constitutive activation of phospholipase C without changing its affinity for ghrelin. We also observed an increase in the proportion of ghrelin receptors localized intracellularly in the presence of prostanoid receptors. Taken together, these results suggest that the increased expression of prostanoid receptors in conditions of vascular inflammation, such as in atherosclerotic plaques, could influence those cellular responses dependent on the constitutive activation of ghrelin receptors.  相似文献   

8.
Structure and subunit composition of GABA(A) receptors.   总被引:4,自引:0,他引:4  
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain and are the site of action of many clinically important drugs. These receptors are composed of five subunits that can belong to eight different subunit classes. If all GABA(A) receptor subunits could randomly combine with each other, an extremely large number of GABA(A) receptor subtypes with distinct subunit composition and arrangement would be formed. Depending on their subunit composition, these receptors would exhibit distinct pharmacological and electrophysiological properties. Recent evidence, however, indicates that not all subunits can assemble efficiently with each other and form functional homo- or hetero-oligomeric receptors. In addition, the efficiency of formation of hetero-oligomeric assembly intermediates determines the subunit stoichiometry and subunit arrangement for each receptor and thus further reduces the possible heterogeneity of GABA(A) receptors in the brain. Studies investigating the subunit composition of native GABA(A) receptors support this conclusion, but also indicate that receptors composed of one, two, three, four, or five different subunits might exist in the brain. Using a recently established immunodepletion technique, the subunit composition and quantitative importance of native GABA(A) receptor subtypes can be determined. This information, together with studies on the regional, cellular and subcellular distribution of these receptor subtypes, will be the basis for a rational development of drugs that specifically affect the GABAergic system.  相似文献   

9.
Truncated activin type II receptors have been reported to inhibit activin receptor signaling inXenopusembryos, although the mechanism of action for this effect has not been fully understood. In the present study we demonstrate that in P19 embryonal carcinoma cells both the induction of the activin responsive 3TP-lux reporter construct and the inhibition of retinoic acid-induced neuronal differentiation by activin are blocked by expression of a truncated activin receptor. To reveal the mechanism of action of truncated activin receptors, the interaction between different activin receptors has been investigated upon coexpression in COS cells followed by cross-linking of125I-activin A and subsequent immunoprecipitation. Complexes between a truncated activin type IIA receptor and activin type IA and type IB receptors can be formed, as demonstrated by coimmunoprecipitation of these type I receptors with the truncated activin type IIA receptor. Other type I receptors known as ALK-1 and ALK-6 also coimmunoprecipitate with the truncated type IIA receptor, whereas ALK-3 and ALK-5 do not. Furthermore, the activin type IIB2receptor does not coimmunoprecipitate with the truncated type IIA receptor, but decreases activin binding to the truncated type IIA receptor. In double immunoprecipitation experiments with cell lysates from COS cells, in which full-length activin type IIA and type IIB2receptors were cotransfected, no interaction between these receptors was found. In contrast, homomeric complexes of full-length activin type IIA receptors were detected. These results implicate that truncated activin receptors can interfere with activin signaling by interacting with activin type I receptors. Additionally, truncated activin type IIB2receptors might also interfere with type IIA receptor signaling by decreasing activin binding to the type IIA receptor and therefore might be more potent in inhibiting activin signal transduction. Furthermore, our data indicate that truncated type IIA receptors can interact with other type I receptors and as such might inhibit signal transduction by type I receptors other than activin type IA and type IB receptors.  相似文献   

10.
We characterized the glucocorticoid receptor fragments produced by neutrophil elastase and compared these receptor fragments to nuclear transfer increased (nti) mutant receptors. Neutrophil elastase and chymotrypsin digested [3H]dexamethasone 21-mesylate labeled receptors at different sites to produce 52 kDa and 42 kDa fragments respectively. Both the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments bound to DNA-cellulose and were immunoadsorbed by anti-glucocorticoid receptor monoclonal antibodies (BUGR2). More extensive digestion of labeled receptors by neutrophil elastase produced 29 kDa receptor fragments that did not bind to DNA-cellulose and did not react with BUGR2 antibodies. The size of nti mutant receptors from S49 mouse lymphoma cell variants is intermediate between that of the 52 kDa elastolytic receptor fragments and 42 kDa chymotryptic receptor fragments. The nti receptors bound to DNA-cellulose with the same affinity as the 52 kDa elastolytic receptor fragments. However, the nti receptors were not immunoadsorbed by BUGR2 antibodies and did not react with these antibodies on Western blot analysis of denatured cellular proteins. The results indicate that 52 kDa elastolytic receptor fragments, 42 kDa chymotryptic receptor fragments and nti mutant receptors correspond to the same region of the receptor molecule. The failure of nti receptors to react with BUGR2 antibodies suggests that the nti receptors may have an altered sequence compared to the corresponding region of normal receptors.  相似文献   

11.
G protein-coupled receptors are cell surface receptors that mediate the effects of extracellular signals in the endocrine/paracrine and sensory systems. Experimental evidence is accumulating, which suggest that these receptors form dimers or higher order oligomers. The functional relevance of G protein-coupled receptor dimerization or oligomerization has been raised in a number of different processes, including ontogeny, internalization, ligand-induced regulation, pharmacological diversity and signal transduction of these receptors. Agonist-independent homo- and hetero-oligomerization of the angiotensin AT1 receptor has been reported, and it has been suggested that hetero-oligomerization with beta-adrenergic receptors leads to cross-inhibition of these receptors. Much less is known about the functional interactions between AT1 receptor homo-oligomers. The aim of the present study was to analyze the functional interactions between these homo-oligomers by determining the functions of normal, AT1 receptor blocker (candesartan) resistant (S109Y) and G protein coupling deficient (DRY/AAY) AT1 receptors (co-)expressed in COS-7 cells. Although we have found no evidence that stimulation of a G protein coupling deficient receptor could cross-activate co-expressed normal receptors, candesartan binding to a signaling deficient receptor caused cross-inhibition of co-expressed candesartan resistant AT1 receptors. Since the studied mutations were in the third intracellular helix of the receptor, the observed effects cannot be explained with domain swapping. These data suggest that AT1 receptor blockers cause cross-inhibition of homo-oligomerized AT1 receptors, and support the concept that receptor dimers/oligomers serve as the functional unit of G protein-coupled receptors.  相似文献   

12.
The human transferrin receptor is post-translationally modified by the covalent attachment of palmitic acid to Cys62 and Cys67 via a thio-ester bond. To investigate the role of the acylation of the transferrin receptor, Cys62 and Cys67 were substituted with serine and alanine residues. The properties of the mutant receptors were compared with wild-type receptors after expression in Chinese hamster ovary cells that lack endogenous transferrin receptors. Rapid incorporation of [3H]palmitate into the wild-type transferrin receptor was observed, but the mutant receptors were found to be palmitoylation-defective. The kinetics of endocytosis and recycling of the wild-type and mutant receptors were compared. It was observed that the rate of endocytosis of the palmitoylation-defective transferrin receptors was significantly greater than the rate measured for the wild-type transferrin receptor. In contrast, the mutation of Cys62 and Cys67 was found to have no significant effect on the rate of transferrin receptor recycling. Consistent with these observations, it was found that cells expressing palmitoylation-defective transferrin receptors exhibited an increased rate of accumulation of [59Fe]diferric transferrin. Together, these data indicate that the palmitoylation of the transferrin receptor is associated with an inhibition of the rate of transferrin receptor endocytosis. Addition of insulin to cultured cells causes an increase in the palmitoylation of cell surface transferrin receptors and a decrease in the rate of transferrin receptor internalization. It was observed that the effect of insulin to inhibit the endocytosis of the acylation-defective [Ala62 Ala67]transferrin receptor was attenuated in comparison with the wild-type receptor. The decreased effectiveness of insulin to inhibit the internalization of the acylation-defective transferrin receptor is consistent with the hypothesis that palmitoylation represents a potential mechanism for the regulation of transferrin receptor endocytosis.  相似文献   

13.
Since it was discovered ten years ago, the angiotensin II (ANG II) type 2 (AT(2)) receptor has been an enigma. This receptor binds ANG II with a high affinity but is not responsible for mediating any of the classical physiological actions of this peptide, all of which involve the ANG II type 1 (AT(1)) receptor. Furthermore, the AT(2) receptor exhibits dramatic differences in biochemical and functional properties and in patterns of expression compared with the AT(1) receptor. During the past decade, much information has been gathered about the AT(2) receptor, and the steadily increasing number of publications indicates a growing interest in this new and independent area of research. A number of studies suggest a role of AT(2) receptors in brain, renal, and cardiovascular functions and in the processes of apoptosis and tissue regeneration. Despite these advances, nothing stands out as the major singular function of these receptors. The study of AT(2) receptors has reached a crossroads, and innovative approaches must be considered so that unifying mechanisms as to the function of these unique receptors can be put forward. In this review we will discuss the advances that have been made in understanding the biology of the AT(2) receptor. Furthermore, we will consider how these discoveries, along with newer experimental approaches, may eventually lead to the elusive physiological and pathophysiological functions of these receptors.  相似文献   

14.
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics.  相似文献   

15.
A431 cells express high numbers of epidermal growth factor (EGF) receptors and produce a ligand for these receptors, transforming growth factor-alpha (TGF-alpha). We have obtained evidence that the EGF receptors on these cells may be activated through an "autocrine" pathway by ligand and have investigated whether activation of phosphorylation of the receptor by the endogenously produced TGF-alpha occurs intracellularly or at the cell surface. When A431 cells were cultured under serum-free conditions, in the absence of exogenous ligand, EGF receptors were found to have a basal level of phosphorylation. When cells were labeled by culturing with 32Pi in the continuous presence of monoclonal antibodies that block binding of TGF-alpha to the EGF receptor, phosphorylation decreased to 30 +/- 10% of the basal level. This reduction could not be accounted for by the decrease in receptor content attributable to down-regulation and catabolism of EGF receptors that resulted from the binding of anti-receptor monoclonal antibodies. The reduction in receptor phosphorylation mediated by antibody was accompanied by the accumulation of increased levels of secreted TGF-alpha species in the culture medium. We also pulse-labeled A431 cells for 15 min with [35S]cysteine and immunoprecipitated the cell lysate with anti-phosphotyrosine antibody after various chase periods. Tyrosine-phosphorylated EGF receptor became detectable after 40 min of chase and reached a maximum after 4-6 h; these times are in agreement with the intervals required for EGF receptors to reach the cell surface after synthesis and then to achieve maximal expression. In addition, only the 170-kDa, mature EGF receptor species, and not the 160-kDa intracellular precursor, was immunoprecipitated with the anti-phosphotyrosine antibody. The results of these pulse-chase experiments and the finding that anti-receptor monoclonal antibody can block receptor phosphorylation suggest that activation of EGF receptors can result from the binding of an endogenous ligand (presumably TGF-alpha), which occurs at the cell surface and not during receptor biosynthesis and intracellular processing.  相似文献   

16.
In frog erythrocytes, desensitization of beta-adrenergic receptors is characterized by a decrease in the beta-receptor recognition sites in the plasma membrane and a concomitant increase in the number of this receptor's binding sites in the cytosol. We have documented that this redistribution of the receptor recognition sites reflects the internalization of the surface-bound beta-adrenergic receptors. The present study was addressed to examine whether transglutaminase plays a role in the agonist-mediated internalization of beta-adrenergic receptor recognition sites. Pretreatment of cells with methylamine was found to decrease the internalization and the loss of membrane-bound beta-adrenergic receptors induced by isoproterenol. Methylamine appears to be equally potent in inhibiting transglutaminase activity and in preventing internalization and the receptor loss. The effect of methylamine on soluble and on membrane-bound beta-adrenergic receptors is due to a change in Bmax rather than Kd of these binding sites. Among eight inhibitors of transglutaminase tested, the rank order potency for blocking the enzyme can be correlated with that for preventing the receptor loss and receptor internalization. Moreover, these drug effects on beta-adrenergic receptors are unrelated to the inhibition of isoproterenol-sensitive adenylate cyclase or the binding of [3H]dihydroalprenolol to beta-receptors. These result may lend credence to the view that transglutaminase participates in the internalization and the decrease of membrane-bound receptors during desensitization of beta-adrenergic receptors.  相似文献   

17.
18.
The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. In this study, we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Gαolf and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds.  相似文献   

19.
20.
Desensitization and coupled receptors: a model of drug dependence   总被引:1,自引:0,他引:1  
It is assumed that certain drug receptors are so coupled with certain physiological receptors that stimulation of either receptor increases the sensitivity of the other. If the drug receptor suffers tolerance (i.e. slow desensitization) and if insensitivity of the drug receptor also makes the physiological receptor insensitive, then tolerance must be responsible for a physiological deficiency. This may be remedied by increased drug administration which will raise the sensitivity of the remaining physiological receptors so that a normal or near-normal physiological situation is achieved. Thus the organism is not only tolerant to the drug but also dependent on it. If such theoretical considerations apply to opiate receptors (as drug receptors) and to catecholamine receptors (as physiological receptors), then the theory predicts that acute morphine administration increases the sensitivity of dopamine receptors, that sympathetic stimulation decreases pain sensitivity, that opioid tolerance provokes increased catecholamine activity, that alpha-receptor stimulants attenuate and alpha-receptor antagonists exacerbate morphine abstinence, and that catecholaminergic inhibition results in increased morphine toxicity. All of these predictions have been verified experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号