首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ribosomal protein L11 (RPL11) binds and inhibits the MDM2 ubiquitin ligase, thereby promoting p53 stability. Thus, RPL11 acts as a tumor suppressor. Here, we show that GRWD1 (glutamate‐rich WD40 repeat containing 1) physically and functionally interacts with RPL11. GRWD1 is localized to nucleoli and is released into the nucleoplasm upon nucleolar stress. Silencing of GRWD1 increases p53 induction by nucleolar stress, whereas overexpression of GRWD1 reduces p53 induction. Furthermore, GRWD1 overexpression competitively inhibits the RPL11–MDM2 interaction and alleviates RPL11‐mediated suppression of MDM2 ubiquitin ligase activity toward p53. These effects are mediated by the N‐terminal region of GRWD1, including the acidic domain. Finally, we show that GRWD1 overexpression in combination with HPV16 E7 and activated KRAS confers anchorage‐independent growth and tumorigenic capacity on normal human fibroblasts. Consistent with this, GRWD1 overexpression is associated with poor prognosis in cancer patients. Taken together, our results suggest that GRWD1 is a novel negative regulator of p53 and a potential oncogene.  相似文献   

2.
Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor progression. Overexpression of the replication initiation factors Cdt1 and Cdc6 along with cyclin A-cdk2 promotes rereplication in human cancer cells with inactive p53 but not in cells with functional p53. A subset of origins distributed throughout the genome refire within 2-4 hr of the first cycle of replication. Induction of rereplication activates p53 through the ATM/ATR/Chk2 DNA damage checkpoint pathways. p53 inhibits rereplication through the induction of the cdk2 inhibitor p21. Therefore, a p53-dependent checkpoint pathway is activated to suppress rereplication and promote genetic stability.  相似文献   

3.
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint   总被引:12,自引:0,他引:12  
Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.  相似文献   

4.
Ribosomal proteins play an important role in p53 activation in response to nucleolar stress. Multiple ribosomal proteins, including L5, L11, L23, and S7, have been shown to bind to and inhibit MDM2, leading to p53 activation. However, it is not clear whether ribosomal protein regulation of MDM2 is specific to some, but not all ribosomal proteins. Here we show that L29 and L30, two ribosomal proteins from the 60 S ribosomal subunit, do not bind to MDM2 and do not inhibit MDM2-mediated p53 suppression, indicating that the ribosomal protein regulation of the MDM2-p53 feedback loop is specific. Interestingly, direct perturbation of the 60 S ribosomal biogenesis by knocking down either L29 or L30 drastically induced the level and activity of p53, leading to p53-depedent cell cycle arrest. This p53 activation was drastically inhibited by knockdown of L11 or L5. Consistently, knockdown of L29 or L30 enhanced the interaction of MDM2 with L11 and L5 and markedly inhibited MDM2-mediated p53 ubiquitination, suggesting that direct perturbation of 60 S ribosomal biogenesis activates p53 via L11- and L5-mediated MDM2 suppression. Mechanistically, knockdown of L30 or L29 significantly increased the NEDDylation and nuclear retention of L11. Knocking down endogenous NEDD8 suppressed p53 activation induced by knockdown of L30. These results demonstrate that NEDDylation of L11 plays a critical role in mediating p53 activation in response to perturbation of ribosomal biogenesis.  相似文献   

5.
Nascent ribosome biogenesis is required during cell growth. To gain insight into the importance of this process during mouse oogenesis and embryonic development, we deleted one allele of the ribosomal protein S6 gene in growing oocytes and generated S6-heterozygous embryos. Oogenesis and embryonic development until embryonic day 5.5 (E5.5) were normal. However, inhibition of entry into M phase of the cell cycle and apoptosis became evident post-E5.5 and led to perigastrulation lethality. Genetic inactivation of p53 bypassed this checkpoint and prolonged development until E12.5, when the embryos died, showing decreased expression of D-type cyclins, diminished fetal liver erythropoiesis, and placental defects. Thus, a p53-dependent checkpoint is activated during gastrulation in response to ribosome insufficiency to prevent improper execution of the developmental program.  相似文献   

6.
Inhibition of the MDM2-p53 feedback loop is critical for p53 activation in response to cellular stresses. The ribosomal proteins L5, L11, and L23 can block this loop by inhibiting MDM2-mediated p53 ubiquitination and degradation in response to ribosomal stress. Here, we show that L11, but not L5 and L23, leads to a drastic accumulation of ubiquitinated and native MDM2. This effect is dependent on the ubiquitin ligase activity of MDM2, but not p53, and requires the central MDM2 binding domain (residues 51-108) of L11. We further show that L11 inhibited 26 S proteasome-mediated degradation of ubiquitinated MDM2 in vitro and consistently prolonged the half-life of MDM2 in cells. These results suggest that L11, unlike L5 and L23, differentially regulates the levels of ubiquitinated p53 and MDM2 and inhibits the turnover and activity of MDM2 through a post-ubiquitination mechanism.  相似文献   

7.
Stabilization of the MDM2 oncoprotein by mutant p53   总被引:3,自引:0,他引:3  
MDM2 is a short-lived protein that regulates p53 degradation. We report here that transient coexpression of MDM2 and several p53 hotspot mutants resulted in stabilization and increased expression of MDM2. Ectopic expression of the mutant p53(175H) allele by recombinant adenovirus infection or stable transfection also stabilized endogenous MDM2 in p53-null cells. A panel of human tumor cell lines expressing different endogenous mutant p53 alleles also contained stabilized nuclear MDM2 at elevated levels when compared with p53-null cells. MDM2 was present in complexes with mutant p53 in tumor cells, and stabilization of MDM2 required direct binding to mutant p53. These results reveal a novel property of mutant p53 and a unique feature of tumors with p53 missense mutations. Accumulation of stable MDM2 may contribute to tumorigenesis through its p53-independent transforming functions.  相似文献   

8.
9.
10.
Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.  相似文献   

11.
12.
13.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2.  相似文献   

14.
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 with a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 can constitute a mechanistic link between DNA damage and the ribosomal stress pathway, and a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.  相似文献   

15.
16.
17.
Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号