首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that beta(4) integrin subunit overexpression increases in vitro invasiveness of NIH3T3 cells that have been transformed by ErbB-2 oncogene. We used this model to identify domains within the large beta(4) cytoplasmic domain that are involved in the interaction of alpha(6)beta(4) with ErbB-2, invasion, and phosphatidylinositol 3-kinase (PI3K) activation. For this purpose, we expressed deletion mutants of beta(4) that lacked either all or portions of the beta(4) cytoplasmic domain in NIH3T3/ErbB-2 cells. We also used an ecto-domain mutant in which most of the extracellular domain of beta(4) was replaced with a c-Myc tag. These transfectants were examined for their ability to invade Matrigel and their ability to activate PI3K, as well as for the ability of alpha(6)beta(4) to co-immunoprecipitate with ErbB-2. The results obtained revealed that a region of the beta(4) cytoplasmic domain between amino acids 854 and 1183 is critical for the ability of alpha(6)beta(4) integrin to increase invasion. Interestingly, the extracellular domain of beta(4) is not necessary for alpha(6)beta(4) to stimulate invasion. The association of alpha(6)beta(4) with ErbB-2 is dependent upon the beta(4) cytoplasmic domain and can occur in the absence of alpha(6)beta(4) heterodimerization. Finally, we observed strong activation of PI3K with beta(4) wild type and with those beta(4) deletion mutants that were able to stimulate invasion upon the expression in NIH3T3/ErbB-2 cells. In conclusion, our results establish that there is cooperation between alpha(6)beta(4) and ErbB-2 in promoting PI3K-dependent invasion and implicate a specific region of the beta(4) cytoplasmic domain (amino acids 854-1183) in this event.  相似文献   

2.
3.
Focal adhesion kinase (FAK) has been shown to be activated in cardiac myocytes exposed to mechanical stress. However, details of how mechanical stimuli induce FAK activation are unknown. We investigated whether signaling events mediated by the RhoA/Rho-associated coiled coil-containing kinase (ROCK) pathway are involved in regulation of stretch-induced FAK phosphorylation at Tyr(397) in neonatal rat ventricular myocytes (NRVMs). Immunostaining showed that RhoA localized to regions of myofilaments alternated with phalloidin (actin) staining. The results of coimmunoprecipitation assays indicated that FAK and RhoA are associated in nonstretched NRVMs, but cyclic stretch significantly reduced the amount of RhoA recovered from anti-FAK immunoprecipitates. Cyclic stretch induced rapid and sustained (up to 2 h) increases in phosphorylation of FAK at Tyr(397) and ERK1/2 at Thr(202)/Tyr(204). Blockade of RhoA/ROCK signaling by pharmacological inhibitors of RhoA (Clostridium botulinum C3 exoenzyme) or ROCK (Y-27632, 10 micromol/l, 1 h) markedly attenuated stretch-induced FAK and ERK1/2 phosphorylation. Similar effects were observed in cells treated with the inhibitor of actin polymerization cytochalasin D. Transfection of NRVMs with RhoA antisense oligonucleotide attenuated stretch-induced FAK and ERK1/2 phosphorylation and expression of beta-myosin heavy chain mRNA. Similar results were seen in cells transfected with FAK antisense oligonucleotide. These findings demonstrate that RhoA/ROCK signaling plays a crucial role in stretch-induced FAK phosphorylation, presumably by coordinating upstream events operationally linked to the actin cytoskeleton.  相似文献   

4.
5.
TGF-beta receptor (TbetaR) signaling is important for systemic IgA production; however, its contribution to IgA secretion at mucosal sites remained uncertain. This important question was addressed using mice lacking the TbetaR in B cells (TbetaRII-B). Although reduced, IgA-secreting cells and IgA were still present in the systemic and mucosal compartments. The adaptive immune response was investigated after oral or nasal immunization using adjuvants acting on different molecular targets, namely, the cholera toxin B subunit and the macrophage-activating lipopeptide-2. Efficient Ag-specific cellular and humoral responses were triggered both in controls and TbetaRII-B mice. However, a significant reduction in Ag-specific IgG2b and increased levels of IgG3 were observed in sera from TbetaRII-B mice. Furthermore, Ag-specific IgA-secreting cells, serum IgA, and secretory IgA were undetectable in TbetaRII-B mice. These results demonstrate the critical role played by TbetaR in Ag-driven stimulation of secretory IgA responses in vivo.  相似文献   

6.
Neu differentiation factor (NDF)-induced signaling involves the activation of members of the ErbB family of receptor tyrosine kinases. Although ectopic expression of recombinant ErbB receptors has yielded valuable insight into their signaling properties, the biological function and in vivo interplay of these receptors are still poorly understood. We addressed this issue by studying NDF signaling in various human cell lines expressing moderate levels of all known ErbB receptors. NDF-induced phosphorylation of ErbB-2 and ErbB-3 was found in the breast epithelial cell line MCF10A, the breast tumor cell lines T47D and MCF7, and the ovarian tumor cell line OVCAR3. Despite similar expression levels, NDF-induced phosphorylation of ErbB-4 was cell specific and only detected in T47D and OVCAR3 cells. Blocking cell surface expression of ErbB-2 by intracellular expression of a single-chain antibody revealed that in these two cell lines, ErbB-2 significantly enhanced phosphorylation of ErbB-4. Efficient NDF-induced phosphorylation of ErbB-3 was strictly ErbB-2 dependent in the breast tumor cell lines T47D and MCF7, while it was largely ErbB-2 independent in MCF10A and OVCAR3 cells. Consequently, NDF-stimulated intracellular signaling and induction of a biological response displayed a cell-specific requirement for ErbB-2. Thus, while ErbB-2 cooperates with NDF receptors in the breast tumor cell lines, ErbB-2 independent mechanisms seem to prevail in other cellular contexts.  相似文献   

7.
The Notch signaling pathway is receiving considerable interest because of its pervasive importance in developmental biology and more recently, in the post-natal functions of the immune system and in cancer biology.Our observations, together with those of other laboratories, support a context-dependent role for Notch signaling in breast cancer.Targeting Notch signaling paves the way to new therapeutic strategy.  相似文献   

8.
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.Subject terms: Oncogenes, Molecular neuroscience  相似文献   

9.
10.
EGF-like growth factors activate their ErbB receptors by promoting receptor-mediated homodimerization or, alternatively, by the formation of heterodimers with the orphan ErbB-2 through an as yet unknown mechanism. To investigate the selectivity in dimer formation by ligands, we have applied the phage display approach to obtain ligands with modified C-terminal residues that discriminate between ErbB-2 and ErbB-3 as dimerization partners. We used the epidermal growth factor/transforming growth factor alpha chimera T1E as the template molecule because it binds to ErbB-3 homodimers with low affinity and to ErbB-2/ErbB-3 heterodimers with high affinity. Many phage variants were selected with enhanced binding affinity for ErbB-3 homodimers, indicating that C-terminal residues contribute to the interaction with ErbB-3. These variants were also potent ligands for ErbB-2/ErbB-3 heterodimers despite negative selection for such heterodimers. In contrast, phage variants positively selected for binding to ErbB-2/ErbB-3 heterodimers but negatively selected for binding to ErbB-3 homodimers can be considered as "second best" ErbB-3 binders, which require ErbB-2 heterodimerization for stable complex formation. Our findings imply that epidermal growth factor-like ligands bind ErbB-3 through a multi-domain interaction involving at least both linear endings of the ligand. Apparently the ErbB-3 affinity of a ligand determines whether it can form only ErbB-2/ErbB-3 complexes or also ErbB-3 homodimers. Because no separate binding domain for ErbB-2 could be identified, our data support a model in which ErbB heterodimerization occurs through a receptor-mediated mechanism and not through bivalent ligands.  相似文献   

11.
Cooperation between the Neu/ErbB-2 and transforming growth factor beta (TGF-beta) signaling pathways enhances the invasive and metastatic capabilities of breast cancer cells; however, the underlying mechanisms mediating this synergy have yet to be fully explained. We demonstrate that TGF-beta induces the migration and invasion of mammary tumor explants expressing an activated Neu/ErbB-2 receptor, which requires signaling from autophosphorylation sites located in the C terminus. A systematic analysis of mammary tumor explants expressing Neu/ErbB-2 add-back receptors that couple to distinct signaling molecules has mapped the synergistic effect of TGF-beta-induced motility and invasion to signals emanating from tyrosine residues 1226/1227 and 1253 of Neu/ErbB-2. Given that the ShcA adaptor protein is known to interact with Neu/ErbB-2 through these residues, we investigated the importance of this signaling molecule in TGF-beta-induced cell motility and invasion. The reduction of ShcA expression rendered cells expressing activated Neu/ErbB-2, or add-back receptors signaling specifically through tyrosines 1226/1227 or 1253, unresponsive to TGF-beta-induced motility and invasion. In addition, a dominant-negative form of ShcA, lacking its three known tyrosine phosphorylation sites, completely abrogates the TGF-beta-induced migration and invasion of breast cancer cells expressing activated Neu/ErbB-2. Our results implicate signaling through the ShcA adaptor as a key component in the synergistic interaction between these pathways.  相似文献   

12.
Ryanodine receptors (RyR) are involved in regulating intracellular Ca(++) mobilization in T lymphocytes. However, the importance of RyR signaling during T cell activation has not yet been determined. In this study, we have used the RyR-selective antagonists, ruthenium red and dantrolene, to determine the effect of RyR blockade on T cell receptor-mediated activation events and cytokine-dependent T cell proliferation. Both ruthenium red and dantrolene inhibited DNA synthesis and cell division, as well as the synthesis of interleukin (IL)-2 by T lymphocytes responding to mitogenic anti-CD3 antibody. Blockade of RyR at initiation of culture or as late as 24 h after T cell receptor stimulation inhibited T cell proliferation, suggesting a requirement for sustained RyR signaling during cell cycle progression. Although flow cytometry revealed that RyR blockade had little effect on activation-induced expression of the alpha chain (CD25) of the high affinity IL-2 receptor, the inhibitory effect of RyR antagonists could not be reversed by the addition of exogenous IL-2 at initiation of culture. In addition, both ruthenium red and dantrolene had a strong inhibitory effect on IL-2-dependent proliferation of CTLL-2 T cells. These data indicate that RyR are involved in regulating IL-2 receptor signaling that drives T cell progression through the cell cycle. We conclude that RyR-associated Ca(++) signaling regulates T cell proliferation by promoting both IL-2 synthesis and IL-2-dependent cell cycle progression.  相似文献   

13.
Most human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein. Cells lacking pRB are less susceptible to the oncogenic actions of H-RasV12 than wild-type cells and activated Ras has an inhibitory effect on the proliferation of pRB-deficient human tumor cells. In addition, depletion of pRB from Ras-transformed murine cells or human tumor cells that harbor Ras pathway mutations inhibits their proliferation and anchorage-independent growth. In sharp contrast to pRB-/- 3T3 cells, fibroblasts deficient in other pRB family members (p107 and p130) are more susceptible to Ras-mediated transformation than wild-type 3T3 cells. Moreover, loss of pRB in tumor cells harboring a Ras mutation results in increased expression of p107, and overexpression of p107 but not pRB strongly inhibits proliferation of these tumor cells. Together, these findings suggest that pRB and p107 have distinct roles in Ras-mediated transformation and suggest a novel tumor-suppressive role for p107 in the context of activated Ras.  相似文献   

14.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   

15.
The innate immune-signaling kinase, TBK1, couples pathogen surveillance to induction of host defense mechanisms. Pathological activation of TBK1 in cancer can overcome programmed cell death cues, enabling cells to survive oncogenic stress. The mechanistic basis of TBK1 prosurvival signaling, however, has been enigmatic. Here, we show that TBK1 directly activates AKT by phosphorylation of the canonical activation loop and hydrophobic motif sites independently of PDK1 and mTORC2. Upon mitogen stimulation, triggering of the innate immune response, re-exposure to glucose, or oncogene activation, TBK1 is recruited to the exocyst, where it activates AKT. In cells lacking TBK1, insulin activates AKT normally, but AKT activation by exocyst-dependent mechanisms is impaired. Discovery and characterization of a 6-aminopyrazolopyrimidine derivative, as a selective low-nanomolar TBK1 inhibitor, indicates that this regulatory arm can be pharmacologically perturbed independently of canonical PI3K/PDK1 signaling. Thus, AKT is a direct TBK1 substrate that connects TBK1 to prosurvival signaling.  相似文献   

16.
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations.  相似文献   

17.
Mutations in the epidermal growth factor receptor have been identified in several human tumor types, including gliomas. These receptor mutants have deletions in their extracellular ligand-binding domains and are, therefore, no longer regulated by ligand, resulting in constitutive activation of the receptor kinase. These mutants have been proposed to transduce oncogenic signals via ligand-independent signaling pathways. Avian viral homologues of these oncogenic epidermal growth factor receptors exhibit structurally homologous deletions and form tumors in chickens. One such mutant, S3v-ErbB, transforms fibroblasts in vitro, and transformation has been correlated with the formation of a novel tyrosine phosphoprotein complex. V-ErbB-mediated complex formation and transformation have been shown to occur independently of Ras activation. The major aims of this study are to further characterize this ligand-independent v-ErbB oncogenic signaling pathway. Here we show that both v-ErbB-mediated phosphoprotein complex formation and transformation are inhibited by a dominant negative mutant of Rho. This inhibition is specific for dominant negative Rho; dominant negative mutants of Rac and Cdc42 have no effect on transformation or on tyrosine phosphorylation of the phosphoprotein complex. Based on these observations, we propose that S3v-ErbB stimulates a Rho-dependent tyrosine kinase, resulting in complex formation and ultimately oncogenic transformation.  相似文献   

18.
19.
20.
Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号