首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Erosion and sedimentation processes within the channel and on the floodplain are indicative of catchment hydrodynamic procedures, as well as the associated nutrient and contaminant transportation. In this paper, we linked the SWAT model with the hydraulic HEC-RAS model to set up a sediment model for 10 river sections in the Upper Stör catchment and simulated the sediment processes from 2001 to 2010. Based on the HEC-RAS output, quantification and comparison of channelized and floodplain sediment processes were conducted. The results indicate that (1) with an average sedimentation depth of 2.85 cm, the deposition process dominated the Upper Stör catchment at the decadal time scale, and the land use/cover condition resulted in differences in sedimentation amounts between different sub-catchments, and (2) the mean deposition rates were 1.75 g/m2/d in the channel and 1.69 g/m2/d on the floodplain, and the floodplain deposition accounted for only 1% of the total sedimentation amount. This observation was mainly caused by the stream power distribution in the channel and on the floodplain. (3) The granularity of the channelized sedimentation was determined by the altitude of the river section, while the granularity of the floodplain sedimentation was positively correlated with the stream power of the flood. The D50s of the channelized and floodplain sediments were 0.92 mm and 0.16 mm, respectively, while the D90 of the sediment was 4.2 mm in the channel and 0.32 mm on the floodplain. Despite the higher uncertainty of the sediment simulation, the results yielded by the combination of the HEC-RAS and SWAT models are comparable to the traditional radioactive dating, sediment trapping or combined model methods used in similar and nearby catchments.  相似文献   

2.
Smith  B. P. G.  Naden  P. S.  Leeks  G. J. L.  Wass  P. D. 《Hydrobiologia》2003,494(1-3):135-143
Suspended sediment budget dynamics for a 55 km reach of the lowland River Swale, Yorkshire, U.K. are investigated for the period October 1994 to June 1995. Particular attention is paid to 11 storm events occurring between October 1994 and April 1995. Each of these storms produced significant suspended sediment transport. Variations in sediment dynamics, for example suspended sediment concentrations, hysteresis patterns and storm peak lag times through events and between the upstream and downstream ends of the reach are examined. Net sediment loss from the reach occurred during the extremely wet four month winter period from December 1994 to April 1995. Patterns of reach sediment storage are concluded to represent a combination of channel bed erosion and/or deposition, bank erosion and floodplain deposition. The implications of these patterns for sediment modelling are discussed.  相似文献   

3.
Land-use changes in a forested floodplain’s watershed can lead to incremental changes in the hydrology and sedimentation rates of the floodplain. The impacts of these changes can be difficult to measure due to the slow response time of mature trees. Seedlings and saplings, on the other hand, may show an immediate response. Responses during these early life history stages can have major consequences for regeneration of floodplain forests and ultimately result in community alteration. This study tested the importance of changes in hydrology and sedimentation on the germination and growth rates of three common floodplain tree species: Acer rubrum, Fraxinus pennsylvanica and Quercus palustris. Two-year-old saplings were grown in a greenhouse under two hydrologic regimes, with or without the addition of sediment. Neither periodic flooding with or without sediment nor static flooding on its own affected the growth of the seedlings. With the addition of sediment, static flooding for two weeks lead to a significant decrease in sapling growth. There was a significant species x treatment interaction, suggesting that each species responded differently to the application of flooding and sediment. The timing of germination and the total percent germination for F. pennsylvanica and Q. palustris seeds were tested under the same conditions. Flooding and sediment acted in an additive manner to delay the germination of both F. pennsylvanica and Q. palustris and to reduce the total germination rate of Q. palustris. There was no difference in the total germination rate of F. pennsylvanica seeds under any treatment. During the growth trials, adventitious roots sprouted on saplings grown under sedimentation. Adventitious roots growing into sediment rather than floodwater should be able to utilize the sediment’s nutrients and may compensate for some of the stress of flooding. The results of this study suggest that sediment tolerances will vary among species, but will not necessarily correlate with flood tolerances, and that sedimentation may be as important as flooding in determining floodplain plant community composition.  相似文献   

4.
Overbank sedimentation on river floodplains can result in significant reduction of the suspended sediment load transported by a river and can thus represent an important component of the catchment sediment budget. Such conveyance losses will also exert an important influence on sediment-associated contaminant fluxes and budgets. This contribution reports the results of a study of sediment-associated contaminants (i.e. total-P, Cr, Cu, Pb and Zn) fluxes in the River Swale (1346 km2) and River Aire (1002 km2) in Yorkshire, U.K., aimed at quantifying the role of overbank floodplain sedimentation in the sediment-associated contaminant budgets. The catchment of the River Aire is dominated by urban and industrial land use in its middle and lower reaches, whereas the River Swale drains a largely rural catchment, although there is a legacy of metal mining in its headwaters which impacts on heavy metal transport by the river. The results for the River Swale indicate that the conveyance losses associated with the deposition of sediment-associated contaminants on the floodplains bordering the main river can be as high as 47% of the total flux through the main channel system. Equivalent values for the River Aire range up to 26%. Contrasts between the two rivers reflect both the location of the contaminant sources within the catchments and the relative magnitude of the fine sediment deposition fluxes associated with their floodplains.  相似文献   

5.
The meanders and floodplains of the Kushiro River were restored in March 2011. A 1.6‐km stretch of the straightened main channel was remeandered by reconnecting the cutoff former channel and backfilling the straightened reach, and a 2.4‐km meander channel was restored. Additionally, flood levees were removed to promote river–floodplain interactions. There were four objectives of this restoration project: to restore the in‐stream habitat for native fish and invertebrates; to restore floodplain vegetation by increasing flooding frequency and raising the groundwater table; to reduce sediment and nutrient loads in the core wetland areas; to restore a river–floodplain landscape typical to naturally meandering rivers. In this project, not only the natural landscape of a meandering river but also its function was successfully restored. The monitoring results indicated that these goals were likely achieved in the short term after the restoration. The abundance and species richness of fish and invertebrate species increased, most likely because the lentic species that formerly inhabited the cutoff channel remained in the backwater and deep pools created in the restored reach. In addition, lotic species immigrated from neighboring reaches. The removal of flood levees and backfilling of the formerly straightened reach were very effective in increasing the frequency of flooding over the floodplains and raising the water table. The wetland vegetation recovered rapidly 1 year after the completion of the meander restoration. Sediment‐laden floodwater spread over the floodplain, and approximately 80–90% of the fine sediment carried by the water was filtered out by the wetland vegetation.  相似文献   

6.
The Upper Mississippi River system has been modified with locks, dams, dikes, bank revetments, channel modifications, and dredging to provide a nine-foot navigation channel. These activities have changed the river's characteristics. The historical changes in the hydrologic, hydraulic, and geomorphic characteristics were assessed and related to navigational development and maintenance activities in the Upper Mississippi River system. The hydrologic, hydraulic, and geomorphic features studied include river discharges, stages, sediment transport, river position, river surface area, island surface area, and river bed elevation. Water and sediment transport effects on dredging were also estimated. It was found that the general position of the Upper Mississippi River system has remained essentially unchanged in the last 150 years except for specific man-made developments in the river basin. The stage, velocity, sediment transport, and river and island areas were altered by development of the 2.75-m navigation system. Dredging requirements are strongly related to mean annual water discharge. Years in which water discharges were great were generally the years during which large volumes of sediment needed to be dredged from the channel. The backwater areas are experiencing some deposition. With implementation of erosion-control measures in major tributaries and upland areas, better confinement of disposed dredged materials, and better maintenance practices, the sedimentation and pertinent problems in the main channel, as well as in the backwater areas, may be reduced with time.  相似文献   

7.
Aim of this study was to evaluate the influence of flood pulse regime attributes (pulse frequency, pulse average intensity and amplitude, and flooded days) on the floristic differentiation of the Argentinian Middle Parana river floodplain vegetation in a 39-year period. Besides on floristic composition richness, diversity, evenness, percentage of woody species and topographic position were assessed for 7 communities. Pulse regime attributes were evaluated for each community taking into account different topographic positions and hydrological levels of the Parana River. Our result showed that fluvial vegetation is not floristically differentiated according to its topographic position and there is a weak relation between pulse regime attributes and diversity of woody and herbaceous species. Because of the same topographic position has been colonized by different vegetation communities, floristically different communities share similar pulse frequency, pulse average intensity and amplitude, and flooded days. Pulse regime effects on fluvial vegetation are dependent on more than the topographic position; other aspects of the dynamics of fluvial systems such as the geomorphologic architecture, sediment load and channel dynamics should be included in order to explain the floristic differentiation of the Parana River floodplain vegetation.  相似文献   

8.
In disturbance-prone ecosystems, organisms often persist in spatial refugia during stressful periods. A clear example is the colonization of abandoned river channels by pioneer riparian trees. Here, we examine the prominence of this establishment pathway for a foundation tree species (Fremont cottonwood, Populus fremontii) within the riparian corridor of a large river, the Sacramento River in central California. We quantified the total proportion of forest that initiated as a result of channel abandonment for a 160-km reach, analyzed concurrent patterns of tree establishment with floodplain accretion and sedimentation history, and developed a conceptual model of biogeomorphic evolution of abandoned channels. Historical air photo analysis indicated that stands associated with abandoned channels comprised more than 50% of the total extant cottonwood forest area. Tree-ring evidence showed that cottonwood stands commonly developed immediately following abandonment, and the recruitment window ranged from 4 to 40 years, but was less than 10 years at most sites. Rates of floodplain rise and fine sediment accumulation were high in young sites and decreased logarithmically over time. Together, these results suggest that abandoned channels are an important refuge for cottonwood recruitment, that the greatest opportunity for colonization occurs within a short period after the cutoff event, and that sedimentation processes influence the duration of the colonization window. On rivers where tree recruitment along the active channel is severely limited by hydrologic regulation and/or land management, abandoned channel refugia may play an even more important role in sustaining an ecologically functional riparian corridor. Preserving bank erosion, active meander corridors and forest regeneration zones created by cutoff events are therefore key conservation measures on shifting rivers.  相似文献   

9.
More accurate reconstruction of the radioactive contamination of the Techa River system in 1949–1951 has been made on the basis of refined data on the amounts and the rate of discharge of radionuclides into the Techa River from the Mayak Production Association; this has led to the development of a modified Techa River model that describes the transport of radionuclides through the up-river ponds and along the Techa River and deposition of radionuclides in the river-bottom sediments and flooded areas. The refined Techa River source-term data define more precisely the time-dependent rates of release and radionuclide composition of the releases that occurred during 1949–1951. The Techa River model takes into account the time-dependent characteristics of the releases and considers (a) the transport of radionuclides adsorbed on solid particles originally contained in the discharges or originating in the up-river ponds as a result of stirring up of contaminated bottom sediments and (b) the transport of radionuclides in soluble form. The output of the Techa River model provides concentrations of all source-term radionuclides in the river water, bottom sediments, and floodplain soils at different distances from the site of radioactive releases for the period of major contamination in 1950–1951. The outputs of the model show good agreement with historical measurements of water and sediment contamination. In addition, the river-model output for 90Sr concentration in the river water is harmonized with retrospective estimates derived from the measurements of 90Sr in the residents of the Techa Riverside villages. Modeled contamination of the floodplain soils by 137Cs is shown to be in agreement with the values reconstructed from late measurements of this radionuclide. Reconstructed estimates of the Techa River contamination are being used for the quantification of internal and external doses received by residents of the Techa Riverside communities.  相似文献   

10.
Vegetation and water velocity effects on patterns of sediment deposition were tested by monitoring sedimentation rates in dense cattail, open water, and transitional vegetation zones at distances of 5, 10, and 20 m from the inflows of two experimental wetland basins at the Des Plaines River Wetlands Demonstration Project, northeastern Illinois, USA. One basin received a high hydrologic load (up to 50 cm/wk) and one basin received a low load (up to 6 cm/wk). Sediment deposition rates within 20 m of the inflows reached 3300 g dry wt m−2 day−1 in the high-load basin and 700 g dry wt m−2 day−1 in the low-load basin. Vegetation patterns did not have a significant effect (P > 0.05) on sediment deposition rates in the high-load basin, whereas water velocity effects on rates of sedimentation were significant (P < 0.01) in three of four periods of monitoring. In the low-load basin, vegetation effects were significant (P < 0.01) during the entire period of investigation. Experimental research at this scale aids in the assessment of design criteria for constructed wetlands.  相似文献   

11.
The Upper Truckee River and Trout Creek, two major tributaries inflowing to Lake Tahoe, join to form what was historically the largest wetland in the Sierra Nevada mountain range that separates California and Nevada (USA). In the 1950s the delta floodplain of the Upper Truckee River was greatly reduced in area (38%) by urban development and the diversion of the river into a single excavated channel. Conversely, Trout Creek still flows through a wide marsh system with significant overbank flooding before entering Lake Tahoe. This study hypothesized that river channel reaches that are not incised within the delta floodplain retain more sediment and nutrients as a result of greater floodplain connectivity, compared to more incised and excavated reaches. Suspended sediment (SS) and total phosphorus (TP) load data from the delta formed by the Upper Truckee River and Trout Creek were collected using flow stage sensors, turbidometers and depth-integrated samples. During the spring snowmelt flow events monitored in 2003, SS load was reduced by 13–41% for the Upper Truckee River and by 68–90% for Trout Creek. Similar reductions in TP load were observed: 13–32% for the Upper Truckee River and 61–84% for Trout Creek. Monitoring of Trout Creek indicated a reduction in load per unit volume of 20–34% in a moderately incised reach versus a reduction of 51–77% in a non-incised marsh reach containing lagoons, braided channels and backwater areas created by a beaver dam. Smaller particle sizes, <10 μm, were retained in the lower marsh reach with similar efficiencies as larger particle sizes. If retention rates from the Trout Creek portion of the marsh are applied to the Upper Truckee River, sediment loading to Lake Tahoe for 2003 would have been reduced by 917 tons of SS.  相似文献   

12.
Mussel beds are known to affect fine sediment dynamics and morphology on mudflat scale, a clear example of ecosystem engineering. Current research into possible ecological engineering applications of mussel beds makes quantitative modeling desirable. In this study a process-based model of the interaction between a young mussel bed and fine sediment was set up for use in the hydrodynamic and morphological model Delft3D-FLOW. The model encompasses the hydraulic roughness of the mussel bed, active capture of suspended sediment by filter feeding and changed bed properties due to biodeposited matter. The mussel bed implementation in Delft3D-FLOW was applied in a test case: a Wadden Sea intertidal mudflat model. It was concluded that a combination of active deposition via filtration and slow down of the flow due to increased roughness leads to high net deposition in the mussel bed. In addition, the ability of young mussels to quickly climb on top of deposited material results in rapid trapping of large amounts of fine sediment. In the wake of the mussel bed, deposition is also high because of reduced flow velocities. The effects of different existing mussel bed patterns were also evaluated. Patchiness and specifically striped patterns cause mussel beds to experience less sedimentation than uniformly covered beds of the same size and may therefore be favorable to mussels.  相似文献   

13.
Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.  相似文献   

14.
Walling  D. E.  Quine  T. A.  Rowan  J. S. 《Hydrobiologia》1992,(1):231-246
Fallout of Chernobyl-derived radionuclides over the UK evidenced marked spatial variation. Relatively high levels were recorded in central Wales, but they declined rapidly to the east and southeast. As a result, the headwaters of the River Severn received substantial inputs of fallout, whereas only low levels were recorded over the middle and lower reaches of its drainage basin. This situation afforded a valuable opportunity to investigate the sediment-associated transport of Chernobyl-derived radiocaesium through the 10 000 km2 drainage basin and its redistribution by fluvial processes.Information on the fallout inputs of radiocaesium has been obtained from the sampling of soil inventories across the basin. Measurements of the radiocaesium content of suspended sediment have been made at several sites on the main river over a period extending from before the Chernobyl disaster through to 1988. Concentrations of caesium-137 in the suspended sediment increased by two orders of magnitude immediately after the accident up to 1450 mBq g –1, declined rapidly subsequently, but remained almost an order of magnitude greater than the pre-Chernobyl levels throughout the remainder of the period (1986–1988). Downstream redistribution of radiocaesium has occurred as a result of deposition of sediment-associated radiocaesium in channel and floodplain sinks. It is estimated that 0.6% of the total fallout input of Chernobyl-derived caesium-134 has been transported out of the basin during the period 1986–1990. Estimates of channel and floodplain storage of sediment-associated caesium-134 at the time of sampling in 1988 and 1989 account for 0.01% and 0.2% of the total fallout input to the basin respectively.  相似文献   

15.
We used paleolimnological methods to investigate spatial and temporal patterns of bulk sediment and nutrient (C, N, P) accumulation in Lakes Hell ‘n’ Blazes (A = 154 ha, zmax = 240 cm), Sawgrass (A = 195 ha, zmax = 157 cm) and Washington (A = 1766 ha, zmax = 322 cm), in the Upper St. Johns River Basin, Florida. The study was designed to evaluate long-term changes in sedimentation and nutrient storage in the basin, and was one component of a larger project addressing flood control, wetland restoration, and water quality improvement. These three study lakes are wide, shallow waterbodies in the upper reaches of the St. Johns River channel. Sediment mapping indicates soft, organic deposits are distributed uniformly throughout Lakes Hell ‘n’ Blazes and Sawgrass. In contrast, much of Lake Washington is characterized by sandy bottom, and organic sediment is largely restricted to the north end of the lake. Lakes Hell ‘n’ Blazes and Sawgrass are effective sediment traps because dense submersed macrophytes and their associated epiphytes reduce flow velocity, intercept suspended particles, and utilize dissolved nutrients. Abundant Hydrilla, combined with short fetch, prevents resuspension and downstream transport of sediments. Larger Lake Washington is probably wind-mixed and resuspended organic sediments are redeposited to downstream sites. 210Pb-dated sediment cores show that organic sediment accumulation began in all three lakes before 1900, but that bulk sediment and nutrient accumulation rates have generally increased since then. The increases are probably attributable, in part, to anthropogenic activities including 1) hydrologic modifications that reduced flow rates in the channel, 2) discharge of nutrient-rich waters from urban, agricultural and ranching areas, and, 3) introduction and periodic herbicide treatment of the exotic macrophytes Eichhornia and Hydrilla.  相似文献   

16.
Vertical hydraulic gradient, channel hydraulic, and substratum data were collected at active chum salmon redds to evaluate their influence on redd site selection in the Kwethluk River, a wandering gravel-bedded tributary of Alaska’s Lower Kuskokwim River. Two distinct summer chum salmon spawning tacitcs: primary- and off-channel groups spawning in different hydraulic and thermal environments. Channel hydraulics, ground-surface water exchanges, and bed sediment data were collected throughout the range of topographic conditions at sites occupied and unoccupied by spawners. Analyses of these data showed that redd site selection was incoherent with channel hydraulics and substratum size, when all channel types were considered. Rather, spawning was associated with the exchange of river and groundwater at four spatial scales. In primary channels, chum salmon spawned only in reaches where the regional hydraulic gradient (regional scale) promoted the penetration of river water, or downwelling, into the bed sediments. Within these reaches, primary-channel spawning was influenced by bed topography (fluvial scale) that promoted strong localized downwelling; a logit model, fitted to constituent hydraulics, discriminated between selected and unselected sites with 89 % accuracy. In contrast, spawners in off-channel habitats (flood and spring channels) selected areas of upwelling groundwater, regardless of channel hydraulics and the regional hydraulic gradient. In parafluvial flood channels, spawners selected localized upwelling associated with short groundwater flow paths (parafluvial scale). In spring channels, within the floodplain’s forested riparia (orthofluvial scale), spawners eschewed areas of localized downwelling and uniformly selected upwelling zones feeding these channels. Thus, redd selectivity differentiated two spawning tactics (groups) in this complex channel network where ground and surface water exchange is an important predictor of spawning habitat.  相似文献   

17.
Sedimentation is considered the most widespread contemporary, human-induced perturbation on reefs, and yet if the problems associated with its estimation using sediment traps are recognized, there have been few reliable measurements made over time frames relevant to the local organisms. This study describes the design, calibration and testing of an in situ optical backscatter sediment deposition sensor capable of measuring sedimentation over intervals of a few hours. The instrument has been reconfigured from an earlier version to include 15 measurement points instead of one, and to have a more rugose measuring surface with a microtopography similar to a coral. Laboratory tests of the instrument with different sediment types, colours, particle sizes and under different flow regimes gave similar accumulation estimates to SedPods, but lower estimates than sediment traps. At higher flow rates (9–17 cm s?1), the deposition sensor and SedPods gave estimates >10× lower than trap accumulation rates. The instrument was deployed for 39 d in a highly turbid inshore area in the Great Barrier Reef. Sediment deposition varied by several orders of magnitude, occurring in either a relatively uniform (constant) pattern or a pulsed pattern characterized by short-term (4–6 h) periods of ‘enhanced’ deposition, occurring daily or twice daily and modulated by the tidal phase. For the whole deployment, which included several very high wind events and suspended sediment concentrations (SSCs) >100 mg L?1, deposition rates averaged 19 ± 16 mg cm?2 d?1. For the first half of the deployment, where SSCs varied from <1 to 28 mg L?1 which is more typical for the study area, the deposition rate averaged only 8 ± 5 mg cm?2 d?1. The capacity to measure sedimentation rates over a few hours is discussed in terms of examining the risk from sediment deposition associated with catchment run-off, natural wind/wave events and dredging activities.  相似文献   

18.
Topographic diversity is an important component of environmental heterogeneity. Topographic diversity within the Upper Mississippi River floodplain has been degraded because of modifications for navigation improvement. Efforts aimed at restoring topographic diversity in the Upper Mississippi River floodplain have been extensive but have not focused on reversing the effects of forest loss and degradation. We investigated habitat features associated with Cerulean Warbler (Setophaga cerulea) locations both within and outside of river floodplains and hypothesized this species would select topographically diverse habitats. Both topographic diversity and the distance to the upland forest/floodplain forest interface were useful predictors of Cerulean Warbler presence. We conclude that incorporation of topographic diversity into floodplain forest restoration planning would likely benefit Cerulean Warblers and the other species with similar habitat requirements. Incorporating topographic diversity into floodplain forest conservation planning will be challenging on major rivers that serve multiple purposes.  相似文献   

19.
Sediment profiles from four sites of the middle Ebro River (NE Spain) were examined to describe total organic carbon (TOC) and total nitrogen (TN) accretion patterns during the last century. Such patterns were related to the potential of floodplain substrates to act as C and N sinks. Two oxbow lakes with different hydroperiods and two patches of riparian forest at different successional stages were selected to represent permanently and intermittently flooded habitats, respectively. Total organic carbon (TOC) and total nitrogen (TN) stocks were estimated, whereas Cs-137 dating and aerial photographs were used to determine historical accretion rates. Our results indicate that TOC and TN accretion patterns have been modified during the last century as a result of human impact on natural river processes at both basin and site scales. Since 1963, sediment deposition at the study sites has diminished, regardless of their hydrological connectivity, indicating a reduction in the potential of the middle Ebro floodplains to act as TOC and TN sinks. Although TOC and TN concentrations are markedly higher in recent sediments, accretion rates between 1927 and 1963 still exceed those of recent years. Despite such recent human-induced changes at basin and habitat scale, the middle Ebro floodplains presented relatively high TOC and TN accretion rates, a fact that should be considered in future basin management plans. Based on those results, suggestions to maximize TOC and TN accretion through ecological restoration are provided. Specific actions include the rehabilitation of fine-grained (<2 mm) sediment delivery, land reclamation or dyke reconfiguration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号